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COMPARISON OF TEXTURE ANALYSIS TECHNIQUES
IN BOTH FREQUENCY AND SPATIAL DOMAINS

FOR CLOUD FEATURE EXTRACTION

Nahid Khazenie t2

'University Corporation for Atmospheric Resear'it,
Boulder, CO 80301

Kim Richardson
2

2 Naval Research Laboratory, Monterey, CA 93943-5006

ABSTRACT

Identification of cloud types through cloud classification using satellite observations is yet to produce consistent
and dependable results. Cloud types are too varied in their geophysical parameters. as measured by satellite
remote sensing instruments, to provide for a direct accurate classification. To aid in classification, texture
measures are additionally employed. These measures characterize local spectral variations in images. They are
widely used for image segmentation, classification, and edge det-.ion. Numerous methods have been developed
to extract textural features from an image on the basis of spatial ana spectral properties of the image. In our effort.
several of these methods are stdied for their applicability in cloud classification and cloud feaure identification.
The examined texture methoIs include a) spatial gray-level co-occurrence matrices, b) gray-level difference vector
method, and c) a class of filt-rs known as Gabor transforms. Methods a) and b) are spatial and statistical while
method c) is in the frequency domain. A series of comparative tests have been performed applying these methods
to NOAA-AVHRR satellite data. A discussion as to the suitability of these texture methods for cloud classification
concludes this study.

Key Words: texture analysis, cloud classification, Gabor transforms. spatial gray-ievci co-ocurrence matrices.
gray-level difference vector (GLDV), NOAA-AVHRR.

INTRODUCTION DATA

Identification of cloud types by automated cloud classifiers, An image from the Gulf of Alaska was chosen for this work-
which operate on a pixel by pixel basis, has yet to show This region was selected due to its high latitude which presents
dependable and accurate results. Clouds have geophysical challenging solar zenith angles. It also provides snow within
parameters which are too inconsistent, as measured by satellite the scene which tests snow and cloud separation capabilities of
remote sensing instruments, to provide for a direct accurate the candidate methods. Furthermore, the general
classification. No method developed to date provides a meteorological activity within this region is high thereby
reliable spectral signature which would uniquely identify a presenting a continuous varying source of frontal cloud
specific cloud type anywhere on the Earth globe during any masses.
season. Cloud types vary in their spectral response at different
latitudinal locations and at different times of the year. These The scene selected for presentation is one of eight images used
variations complicate methods required for cloud type in this study. It is an AVHRR image from 15 October 1988.
identification using remote sensing techniques. 19Z. A full resolution (1.1 kin per pixel) sector of 1024 by

1024 ten-bit pixels was extracted from the original 2048 by
Surveying the various available statistical, structural, and 2048 data set.
frequency domain techniques applied to cloud classification, it
appears that there are not enough parametrization vectors to The channel one and channel four radiance images are shown
uniquely separate any one cloud type. For this reason, texture in Figures I and 2. The channel one image is histogram-
analysis methods are drawn upon in addition to aid in this equalized for purposes of display. The channel four image is
problem. The use of texture parameters has been reported on inverted so as to represent clouds in lighter gray shades.
extensively in recent literature (Wechsler. 1980). Texture
techniques used in our study include a) spatial gray-level co- The large band of clouds in the extreme right of the image is a
occurrence matrices. b) gray-level difference vector (GLDV) frontal cloud mass that has previously moved through the area.
method, and c) a class of filters known as Gabor transforms. This cloud mass is characterized by high thick cirrus over
Each of these approaches has unique merit for providing cimulus. These clouds are brightened by their height as well
additional information about cloud masses within a scene, as by the low sun angle which is characteristic for this
These unique differences are the focus in this study. northern latitude,

Images in this case study are composites of Advanced Very In the lower central portion of the image arc well defined cloud
High Resolution Rad;,-netcr (AVHRR) chanrel one and streets. They are trailed by open cell stratocumulus and
channel four. Pixel by pixel classifications of cloud types. altostratus that extend to the left center of the image. The
based on the spectral and spatial responses from these mixed layered cloud mass in the lower left portion of the image
channels, are enhanced with results from the various texture represents stratus and altostratus with a cover of thick cirrus,
analysis algorithms. Results of the classifications from the Some closed cell stratocumulus are at the bottom of the image
combined techniques are compared and discussed. between the stratus and frontal ctuuds-
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Statistical Methods
Snow can he seen in the upper central portion of the image.
Typically, snow will be observed to have a dendritic-like The two most commonly used statistical texture methods are
structure which distinguishes it front cloud masses. the a) gray-level difference vector (GLDV\ method (Welch et

al., 1990, Khazenie and Richardson. 19911. and the b) co-
occurrence matnx method (Haralick. 1973). Our current study
draws upon both of these methods. Both methods extract a set

TEXTURAL METHODS of statistical parameters from a given image. Some of the
commonly extracted texture parameters are inertia, correlation.

Texture is a term used to characterize the surface of a given homogeneity, entropy, energy. variance, skewness, and
object. It can also be applied to an image of a phenomenon. It kurtosis. These parameters are then used as the input features
is undoubtedly one of the main features drawn upon in image to a classifier.
processing and pattern recognition. Texture analysis plays a
fundamental role in classifying objects and outlining Texture measures are derived commonly trom statistical
significant regions of a given gray level image (Wechsler, parameters of first or second order. The GLDV method
1980). Despite its ubiquity in image data, though, texture estimates the probability density function for difterences taken
lacks a precise definition. Some definitions characterize between image function values at locations spaced d pixels
texture as visual images which possess some stochastic apart and at an angle 8. The resulting texture measures are
structure. Otheýr definitions describe texture as an attribute based on this first order staersulc. Tin spatial cooccurrence

generated by a local periodic pattern. Whatever the definition, matrix method, on the other hand. estimates the joint gray level
most algorithms which derive texture from an image fall into distribution for two gray levels located at a distance d and at an
the categories of either statistical or frequency domain. A brief
description of the three texture methods of interest follows, angle 6. The texture measures derived by the co-occurrecn"

matrfA .icuiod are based on this second order statistic.

The co-occurrence matrix method is used in this study to
derive texture values of entropy. Limogeneity. energy (similar
to the GLDV angular second moment), and correlation. These
four parameters were calculated for the radiances of each of the
two channels, AVHRR channel one and channel four. for a
total of eight texture values. Each texture value was processed
using three different convolution sizes. The n by n
convolution sizes are n z: 3. 9, and 16. In addition, the
search angle for each of the convolutions was varied to
determine whether or not the derived textures possess any

angular dependence. The angie was set to 6 = 0.0 45,0 90.0

and 135.0 Search angle dependence is expected only when
the surface resolution is much smaller than the 1.1 km surface
resolution of the AVHRR instrument and indeed, as discussed
later, no angular dependence was identified using the co-
occurrence matrix method and the given image data.

The GLDV technique was similarly applied. The same texture
5.,values as for the co-occurrence matrix method were calculated

f The calculations were performed on the same channel one and
channel four radiance values, but only for a single search

Figure 1. AVHRR channel I ten-bit radiance angle, 0 = 0. The search angle non-dependence had already
values, histogram equalized for display. been established from working with the co-occurrence matrix

method. Seven convolution sizes were chosen to derive the
texture values of entropy, local homogeneity, and angular
second moment. The convolution sizes were n = 3, 5, 9,
11, 16, 32, and 64. From a previous study (Khazenic and
Richardson, 1991) the three sizes of n = 3. 16. and 64
provided the best statistical representation of the data for use in
cloud classification. This finding was re-established in the
current work.

"-I

Frequency Domain Methods 9

Spatial granularity and repetitiveness is one of the
characteristic aspects of texture. Both can be quantified by c
looking at the frequency content of an image. It is therefore
reasonable to expect that transform techniques are suitable for
extracting texture information from imaces.

The Fourier transform analysis method (Lcndans ci al.. 197t1)
is a procedure which works in the frequency domain. It is. by T
far. the most used transform method Image features, such as a*
spectral rings or edges, are derived from the image power "T
spectrum by this technique. t1

Figure 2. AVHRR channel 4 ten-bit radiance Related to the Fourier transform are functions first introduced
values, inverted for display. by Gabor (Gabor. 1946). These functions have been extended
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to two dime".sions (Daugman. 1980) resulting in what is Co-occurrence Matrix
known as the two-dimensional (2-D) Gabor filters.

The texture results from the co-occurrence matrix algorithm
One of the unique properties of Gabor filters is their ability to were first classified alone for each of the convolution sizes and
discriminate textural features in a way similar to that of human search angles. Figure 3 is the result of this classification for
vision (Fogel et al.. 1989). Another important property is an n by n convolution size where n = 3 and for a search angie
their achievement of the theoretical lower bound of joint 8 = 45.° Ths represents the best result for all of the
uncertainty in the two dimensions of visual space and spatial
frequency variables (Bovik et al., 1990). Additional

-advantages of Gabor transforms include their tunable spatial
orientation, radial frequency bandwidths, and tunable center
frequencies.

The 2-D Gabor filter is a harmonic oscillator, a sinusoidal
plane wave within a Gaussian envelope. The convolution
version of the complex 2-D Gabor function has the following
general form.

G(x, y I W, 0, 'p, X, Y)

sin(W(xcosO - ysinO)+q÷)

In equation (1), the Gaussian width is c, the filter orientation
is 0, the frequency is W, and the phase shift ts p(. Variables •.
X and Y define the center of the fi]ter.

The Gabor function, equation (1), can be represented as a

complex function having a real and an imaginary component, Figure 3. Texture values from the co-occurrence
G1 and GZ, respectively, matrix algorithm, classified and scaled

up for display.
Gj(x, y I W, 8, q, = 0, X, 1')

It is clear from Figure 3 that the texture values alone do not

G2 (x, y I W, 0, • = X, Y) represent cloud types with any accuracy. Figure 3 shows nine
2' classes, but none identify any of the cloud types uniquely.

The classified images are extremely noisy and at best represent
Functions G 1 and G 2 are. respectively, even and odd features within the cloud masses rather than the cloud types
symmetric along the preferred orientation direction e. The themselves. There is. however, one reasonably accurate
results of convoluting Gt and G2 with any two-dimensional feature which resulted from this classification. For the lowest

convolution size, at all search angles. the clear vs. cloudy
function are identical except for a spectral shift of irI2 along areas are quite distinct.

the direction 0. For convolution sizes of n = 9 and 16. for all search angles.
Given an image I(x, y). its Gabor transformation for a given the classification separates the clear areas from the cloudy ones

with suc'ess as well. It also produces a smoother
filter size n with orientation angle 8 and frequency W is given classification. The cloud types, though, are still difficult to
by the following equation. identify.

SZ ( X Y I WO) = [GI * I(x,y)J 2 + [G 2 * I(x,y)12  The classifications were performed twice on the texture results
where n = 9 and 16. The first classification was performed

The Gabor filter described by equation (1) was applied to the on all of the texture values dcnved. The second classification
AVHRR test images' channel one and channel four radiances. was performed on the same values except for the correlation

parameter. The results of the cloud type classification neitherThe response was evaluated for filters with 0 = 0.0 45,° improved nor degraded. Therefore it seems that the correlation
90.0 and 135.0 The frequency W was set to 2rf/(n/2) parameter does not contribute to the information needed for
where f = 0.5, 0.6. 0.7, 0.8, 0.9. and 1.0. The tested cloud typing.
filter sizes n were 9, 17, 33, and 65., The best results for
cloud typing from the four convolutions was for n = 17. In all cases of classifying only the co-occurrence matrix texture

results, the thick cirrus was identifiable as a homogeneous
feature, yet it was assigned the same class as portions of the
open cell stratocumulus. Also in all cases, the snow was not

RESULTS separated from the clouds. The snow was assigned the same
class as the stratus and altostratus clouds.

The 1024 by 1024 ten-bit radiance data from channels one
and four was used as input to the various texture algorithms. It was concluded at this point that classifying textore values
The texture output was then resized back to the full 1024 by alone does not provide sufficient results for identifying cloud
1024 resolution and added, as supplementary channels, to the types. The next step then was to provide more information to
radiance data. The resulting N channel data set was classified the classifier. The eight texture values were combined with the
using a standard statistical unsupervised classifier, two AVHRR channel radiances (channel one and four) and

classification was performed on the resulting ten channels ol
data.
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The texture values for convolution size of n = 9 were resized can be extended easily to all AVHRR images. With more
to the full 1024 by 1024 resolution, equal to that of the study this may indeed prove to he the case. Simple
channel radiances, merged with the channel radiances, and the thresholding of the texture values may be all that is required.
resulting data set was classified. The output is shown in Results from a previous stud)y (Khazenie and Richardson,
Figure 4. 1991) suppon this conjecture.

The search angle was varied as before, but the results from the As with the co-occurrence matrix output. the textures derived
classifier showed virtually no differences for unequal angles. by the GLDV were then combined with the channel one and
The results for varied search ingles were compared by channel four radiances, The resulting eight channels were
calculating difference images. Only minor vanations were classified and the outcome is shown in Figure 5. Again, the
noted in some of the mixed layer cloud types amounting for results are essentially identical to those from the co-occurrence
less than 1% difference over the entire image. From this it matrix method (Figure 4) in their ability to type clouds. Sun
was concluded that the process -s not dependent on search angle remains a problem within the frontal cloud region at the
angle and all further comparisons were made setting 0 =0.0 extreme right of the image. However, the mixed layer clouds

in the lower left show the same successful level of cloud type
separation as with the co-occurrence matrix method.

Figure 4. Combination of AVHRR channel I,
channel 4, and texture values from the Figure 5. Combination of AVHRR channel 1,
co-occurrence matrix algorithm, clas- channel 4, and texture values from the
"sified. GLDV algorithm, classified.

The frontal cloud mass at the extreme right of the image in Convolution size plays a role in the ability to type clouds. For
Figure 4 is represented by four distinct classes. The thick n > 16 the algorithm is able to identify the presence of
cirrus, the altocumulus. the cumulus, and the lower level clouds. It is also able to determine that the texture in the
stratocumulus each appear as distinct cloud types. They are region is unique. However, it does not provide enough
affected by the sun angle thereby giving the cirrus over the information to the classifier to separate cloud types. Although
frontal cloud mass a different class than the cirrus over the the statistical significance is in favor of the higher convolution
stratus in the lower left portion of the image. sizes, it is the lower convolution sizes that provide the textural

The classes representing the stratus clouds provide more significance to the classifier for cloud type identification.

separation of cloud types than a human photointerperter would
give. Should the goal be to duplicate human performance, one Gabor Filters
can easily combine some of the statistical classes. However,
our goal was to obtain parameter vectors for performing Figure 6 presents the result of classifying the test image
unsupervised cloud classifications, no matter how many channel one and channel four radiances combined with the
vectors there may be, as long as the distinct cloud types can be
separated from each another. That goal was achieved. Gabor filter output where n = 17 and phase angle p = 0. Of

the available 2048 by 2048 data, the same 1024 by 1024
scene was originally acquired as for the statistical methods.

Gray Level Difference Vector However, computer resources available for the study of Gabor
filters could digest no more than 512 by 512 images.

The texture results from the gray level difference vector Therefore, only the lower left quarter of each 1024 by 1024
(GLDV) algorithm were first classified alone, identically as for scene was analyzed. One such quarter is shown in Figure 6.
the co-occurrence matrix. Similarly. the classification results
from these texture values alone do not provide cloud type The thick cirrus over the stratus is well separated. This is a
information directly. The results are essentially identicdil to great improvement over the classification of texture values
those shown in Figure 3 for the co-occurrence matrix. The from the Gabor filter alone. Indeed the classifications of the
textures values, when classified, identify edges between combined image. radiances and textures shown in Figure 6,
features within the image well. but the features are various are much easier to label than are either of the classifications
area.s within the cloud type rather than the cloud type itself, based on texture only.

As with the co-occurrence matrix method, the GLDV performs Convolution sizes n > 17 do not perform well for a wide
very well at identifying cloud versus no cloud areas within the variety of cloud types within a scene. This follows alon w ith
scene. It is not know at this time. however, if this capability the same findines as for the statistical textural methods

Important textural attributes in the cloud mass are lost w.'en
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higher convolution sizes are used. With such convolution In Figure 6 the boundary ot the thick cirrus over the stratus
sizes, the textural analysis shows the dominant texture over has been smoothed This is also true for the stratus cloud
each cloud mass, but does not sufficiently indicate types. Theseparation of multilayered clouds is similar for all
characteristic features of that cloud mass thereby missing the three methods.
classification of the cloud type. In particular, the open cell
stratocumulus and altostratus within the image did not separate The computer processing time required for the Gabor tifter
out at the higher convolution gizes. method proved much less than either of the two statistical

methods (co-occurrence matrix or GLDV). Processing a full
1024 by 1024 scene using the Gabor filter took
approximatcly one minute on a SUN SparcStation If. Thbý
statistical methods required approximately ten minutes each for
the same image.

CONCLUSION

Classification of cloud types using spectral and derived
textural parameter vectors alone has not been completely
successful. Additional information about texture in the image
provides more input to a cloud classifier. Such an addition
shows considerable improvement over cloud classitica,.ton
based only on spectral information. Despite the marked
improvement, however, it does not yet appear that the addiuon
of texture information provides all of the necessary parameters
required to successfully classify and completely label cloud
types. Nevertheless, results from this study indicate that
Gabor filters applied to the spectral data set, and used in
conjunction with the spectral data for classification, extract
cloud types better and faster than the other techniques
explored.

Figure 6. Combination of AVHRR channel 1,
channel 4, and texture values from the
Gabor filter, classified. The results Acknowledgements
shown cover only the lower left quarter
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Work has also continued into special case GP algorithms: Integer, Zero-One,
Fuzzy, Interactive and Chance-Constrained. A breakdown of publications in
these areas is given in Romero [37]. In total he lists 355 papers dealing with
GP applications in 26 distinct areas.

Research has been done to apply other Multi-Criteria and Management Sci-
ence techniques to Goal Programming. These include interactive multi-criteria
methods [38], 'Delphi' techniques [39, 40], Saaty's [41] analytical hierarchy ap-
proach [36, 23, 39], and resource planning and management systems(RPMS)
networks [42]. Recently papers have been published dealing with some of the
perceived 'errors' in G.P [37, 40, 43]. and explaining how these can be avoided
by the correct setting of weights, goals, priority levels etc.

The remainder of the paper will be divided into four sections. Section 2
will deal with lexicographic(pre-emptive) GP, section 3 with weighted GP(non
pre-emptive), section 4 with the connection between utility functions and GP.
finally section 5 will draw conclusions as to the current direction of GP and the
direction of the authors' future research.

2 Lexicographic GP

Of the 355 papers mentioned by Romero [37], 226 use the concept of Lexico-
graphic GP(LGP), which requires the pre-emptive ordering of priority levels.
The standard LGP model can be algebraically represented as:

Le mrin a = (g (n, p), g2(n, p),. ....... ,K(n, p))

subject to,
fi(x) +4 ni -- pi =- bi i = I . ..... I m

This model has K priority levels, and m objectives, a is an ordered vector of
these K p-iority L::.!s.

A standard 'g' (within priority level) function is given by:

gk(n, p) = aot.ni . ..... + Ok,.nm + 3kP1 . ..... + 1k.,_Pm

This paper will summarize the development of algorithms to solve the LGP
model, work on the multi-dimensional dual [30, 441, and current thinking on
methods of priority ranking and weighting within the priority levels. Some
applications of LGP will be commented on, in an effort to outline which types
of problem are suitable for an LGP approach, and which are better solved using
other techniques.

3 Weighted GP

Weighted (or non-pre-emptive) GP(WGP) requires no pre-emptive ordering of
the objective functions. Instead all the different deviations are placed in a single
priority level objective with different weights to represent their importance.
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Algebraically, a WGP has the following structure:

k

Min a = E(aini + O3p1 )

Subject to,
f,(x) + ni - pi = bi i = I,. ..... m

x E C,

Where C, is an optional constraint set. Of interest here are the problems
caused by incommensurability, i.e. objective functions being measured in differ-
ent units, and techniques used to overcome this. As in the LGP case, application
areas will be outlined.

4 Utility Functions

The third section will deal with the connections between utility functions and
the different types of GP. It will explore the literature on the problems caused in
reconciling LGP and utility function theory. It will also examine recendy devel-
oped techniques to model GP's more closely around their underlying objective
functions [45].

5 Summary and Conclusions

The final section will draw conculsions as to the scope and limitatiors of GP
and highlight areas in which the authors intlend to conduct further research.
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MULTI-STAGE ECONOMIC LOT SCHEDUUNG PROBLEM

Ayp.gW TokeN Tecz! and Nesim Erkip
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06531, Ankara, Turkey

Ine Economic Lot Scheduling Problem (ELSP) Is to economically

schedule lots of one or more products on a single machine.

Demand is constant, backlogging Is not allowed and the planning

honzon is infinite. The problem is to minimize total operating cost per

unit time which is comprised of setup costs and Inventory costs.

Setup costs are incurred whenever a production for a lot is begun

and inventory carrying costs can be defined as the time value of

money tied up In Inventory.

An extension to single machine/facility problem is Ihe STudy of

environments where products are manufactured through several

operations. Such systems are. In general, called as multi-stage

production systems. Multi-stage production systems received a lot of

academic attention in recent years focussing on the control of work-

In-process Inventory and Its functional relationship to the

manufacturing cycle time. It Is a very well known fact by now, the

larger the production lot sze. the longer the manufacturing cycle.

which In turn, increases the work-in-process inventory. There exists a

vast literature modelling this relationship to varying degrees in

different models for different system configurations.
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The Multi-stage Economic Lot Scheduling Problem (MS-ELSP) brings

together two Important problem chiaracteristics inherent to muttfitem

and multi-stage problems. In a multi-item problem, the main issue is

that of creating schedules which avoids the interference that Is likeiy

to occur when two or more products compete for the some facility.

We will refer to this as the 'feasibllity Issue'. in a mumil-stage

environment, the production should be synchronized so thor

concurrent production of the same lot Is not possible In the

consecutive stages. This characteristic leads to the definition at wor..

in-process inventory which. In fact. is a tool for the synchronization of

production among stages. Thus. in multi-stage problems. creating

schedules owing this property will be referred to as 'consistency

Issue'. This study addresses the Multi-stage Economic Lot Scheauling

Problem with the objective of determining feasible and corsistent

schedules which result from the conventional traodeoff between setup

costs and Inventory holding costs comprising the total cost of a

schedule.

In this research, we restrict the study of MS-ELSP to serial systems

where there are m products to be manufactured through n distinct

stages. We first analyze the two product - two stage problem. In

order to guarantee feasibility, common cycle solutions In which the

possible values of cycle times for all Items are constrained to a singie

cycle time value. T. are sought for. In a two-stage production

system, production of a lot on the second stage cannot begin until

its production on the first stage Is completed. Therefore, production

between stages should be synchronized so that we end up with

consistent schedules. To ensure consistency, we define a ccnstralnt
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tor each product which also provide informaztion about the work-in-t

rocess Invetodes.

Another Important point In this study is the presence of nonnegative

setup times. Setup times mean a loss In the productive capacity and

their effect on lot sizes is the most significant when the capacity

utiilzation is high. On the other hand, work-In-process Inventories

tend to Increase with Increasing capacity utilizations. Therefore.

ignorance of setup times will result In overestimated lot sizes due to

urvderestlmation of work-In-process Inventories.

The mathematical programming formulation of this problem Is

developed where the objective function is nonlinear with a linear set

of constraints. Setting the cycle time to a fixed value, we first

Tinearize the objective function. By using the dual problem and

complementary slackness, the optimal solution of this problem and

thus the optimal cycle time for the two product - two stage problem

are obtained. Besides, we have the exact terms for the work-in-

process Inventories (queueing Inventories: inventory that built up on

the previous stage If the successor stage Is busy with processing the

other products) since they can be expressed explicitly as analytical

functions of the cycle time. Then, we generalize our result to mutti-

product case In a two stage system which constitutes a basis for the

analysis of the m-product. n-stage economic lot scheduling

,problem.

Key words Economic Lot Scheduling Problem, multi-stoge
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t us paper we present computational experience with a primal-dual interior point for smooth convex
programming problems oi the ty-pe

rmin CT:z
s. L. (1)

9:1z) < A;,

w1 ,e~e c = RW and g : WR -. R' L.- a vector-valued function. We assume that each component g, is
.'nnvex t,et s E 1111', be the vector of slack variables. The inequality constraints in (I) are replaced by

gkz), s"= 0, > O.

C-.',Me a parameter .! > 0, We associ&te with (1) the barrier p~roblem

mnn JX- /it Irn3,

A.t. 12)
jz~ .. - s =U

S >0.

*V/ s.ý_ume that later's condition holi,:

.ss-ureption 0.. T ere ts an X E R" .,uch that g(x) < 0.

-,e also a:;sum,-

z,:siunption 0.2 The set Jz : gqzx <_ 0 and c"*: < } is boundead for riL 8.

Under these assumixions Problem (2) has a :ojution. The necessary and sufficient conditions for opti-
mait., narreiy the Karush-Kuhn-Tucker eouationr. or KKT equations. are

"is-pe = 0 (.)

g(X)+s = 0 (4)

L) Y+C = 0, (5)

with s > 0 and y > 0. Here
a= { 8gdx }

i5 the Jacobian matrix of 9 and Y E R' is a vector of dual variables.

T.At
F: R'" x R"' Y R" -. R' x R"' x Rx

be a multi-valued function defined by

F(z) (FF) (aIe

with z (t, s, x). F also depends on the parameter p > 0. With this notation, the KKT system is simply
F(Z) =0.

We also introduce the Lagrangean

L(y;z, j) = cr= + yT(g(x) + s). (6)
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The KKT system (3) - (5) can be rewritten as

(9L 8LYj-Ae=0, •- =0, and =

Following usual terminology, a point z = (ys,z) is intericc if y > 0 and a > 0. We do not re.Wre it ýO
be primal or dual feasible. At such a point, we define the Newton direction dz = (dy, ds, dx) by

oF•
d-z + F = 0.

Note that

S Y a
OF 82L a2L
-T0= q - -
3: aOas a7ya,.

(902 L 0 
2 L-xa o --

axaya
with 2L a2 L i a2L i T 82L )2 9.g=1 -L = - - L (, and

4aO-s avax ax' axzy 0Ox) ' 83 ,

Since the gi are convex, V. is positive semi-definite. Let us make the further assumption

Assumption 0.3 Let y > 0 and s > 0. The matrix

H:92L +aL _, 2L

is positive definite.

A sufficient condition for that is:

02 L a 02g,O-- = •_,,•z
i=1

is positive definite, or f has full row rank, or both.

Under Assumption 0.3, V. is regular at any interior point. Thus

f F '

dz - F.

Let us explicitly write and solve the system (7) in dy, ds and dz:

Sdy + Yds + F, = 0
O2L d

ds+-dX +, = 0

O2L O2L
n the+e epr n w= 0.

In these expressions we used the fact that =3 1'
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The algorithm goes as follows: Given an interior, but not necessarily feasible, point, we compute the
search direction dz associated with ;. Then a step is taken along that direction sudc that the interior
property is maintained. Namely, let 6 := max{a : 11 + cdy >_ O, s + ads > 0} and let 0 < - < 1. Then
the next iterate is given by

x := z+ycdz

s = a+ -ads

y : V +-yoady.

Te choice of u is adaptive. For "normal" steps, we take p = If minys, _5 9"±, the vector Ys is
considered excessively unbalanced and we take p = This step is named "centering".

We tested our algorithm on a sample of medium size random problems. We primarily studied the effect
of varying the size of the problems. We observed that the number of iterations increases slowly with the
number of constraints and, surprisingly enough, it decreases with the number of free variables in the case
"of quadratically constrained problems.

We analyzed the influence of centering and showed it to be positive. We also studied alternative strategies
for the step size. It turns out that taking a fixed fraction of the maximal step size works well in practice.
Moreover the fraction can be extremely close to 1 without any negative effect on the performance of the
method. Finally, we looked at different choices for the starting point.

"We applied this algorithm to linear programming problems. The algorithm behaves a bit differently than
with quadratic constraints. The iteration count increases both with the number of constraints and the
•,umber of free variables. For the former the increase is slower. The figures are reasonable.
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I INTRODUCTION

Mathematical programming and theory of scheduling have a lot of optirniza-
tion problems which are NP-hard in spite of their very simple structure. Thus these
problems are considered to be difficult to solve. But some of them are easy in the
sense that there are straightforward ways to generate feasible solutions of them, e.g.
the knapsack problem, the TSP problem and many scheduling problems.

One of theni is the scheduling of identical parallel machines where the max-
imal completion time has to be miniminzed. This problem is the topic of this ex-
perimental study. It has several heuristics. The two basic ones are Graham's list
scheduling and the multi-fit algorithm. There are known upper bounds for the
relative accuracy of the heuristic solutions provided by these methods. The two
algorithms have quite different strategies. This is the reason that some problems
worst from the point of view of list scheduling can be solved exactly by the multi-fit
,d!gori;thm ar.d vice versa. This gives the question that how bad accuracy can have
the better of the list scheduling and the multi-fit solutions. This was the initial ques-
tion of this research. Another algorithm called interc[. 'uging method has been also
investigated. The research made necessary to sharpen the well-known lower bound
of the optimal valte of the objec.iwve finction, too.

"2 TIHE SCHIIEDUILING PROBLEM

In the classical prohlem of the scheduling of parallel machines n jobs have
to be distributed1 among m identical machines in such a way that the makespan is
minimal.

The whole operation starts at time 0. The machine independent processing
times are denoted by p,(j = I,..., ) which are positive integers. It is easy to see
that there is at least one optimal solution such that the machines start to work at
t=0 and are working without any idle time until all jobs assigned to them have been
finished.

Let C' be the completion time of job j. The maximal completion time, i.e.
max{C, : J = 1, .... I1}, is denoted by C'.

Theorem 1 [Graham 69], [Coffnan et al. 78] In any problem

max,;L E'I-, p, max{pj :nj
< C- < (1)

Max{ ;' 1= )_,,,a{1, :j = l,..a,,,f}.O
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The interval in which the optimal value must lie is denoted by [L, U1, i.e.

L = [max( -Zp,,maxp,:j= .,n}}] (2)
Jil

and.

fT = tiuax,-; :paxp j = I,.... ,,}}j. t3)

Both thle list scheduling and thle multi-fit algorithm start with the deter-

mination of the nonincreasing order of the processing times. The two algorithms
assign the jobs to machines in that order. Therefore without loss of generality it
may be assumed that

p1 > pi > ... >_ P, (4

The rule of the list scheduling is that

every job is assigned to a machine having minimal current load. (LS)

Theorem 2 [Graham 69] Let C(LS) be the value of the solution provided by the list
scheduling. Then

C(LS) 4 %
C- - 3 :3m

Theorem 3 [Graham 69] If there is an optimal solution which assigns to each ma-
chine at most 2 jobs. then the .solntionn given. by the lisi scheduling is optimal. C1

The multi-fit algorithm consists of two parts. A greedy method is the in-
ternal part and a logarithmwic se an h is the c'xternal part which organizes the ap-
plications of the greedy method. For the internal part an upper bound K of the
optimal value is assumed. The greedy method assigns each job to the first machine
into it fits not exceeding the upper bound K. In the external part a current lower
bound and a current upper bound are assumed and are denoted by Ic and uc. For
the internal part K" is chosen as +cu. If the greedy method was able to find a
solution not worst then K, then tic becomes [KJ, otherwise Ic = [1K. The process
is repeated until the condition

uc = 1c

is not satisfied. Notice that it follows from the assumption of the integrality of the
processing times that the number of applications of the greedy method is O(log(U -
L)). Thus the multi-fit algorithm is polynomial.

Theorem 4 [Friesen 84] Let C(MF) be the value of the solution provided by the
multi-fit algorithm. Then

C(MF) < 1.20 (6)
C-
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A third heuristic method called interchanging algorithm has been applied
in this research. It makes the following steps starting from any solution. It inter-
changes one job of the most loaded machine with one job of another machine. The
interchange is possible if and only if the maximal completion time is decreased in
this way. Let s and t, resp., be indices of the most loaded and the other machines,
resp. The current load of the machiiies are denoted by L, and L,. Suppose that the
job i of machine s is interchanged with job j. Then the following two conditions
must hold

P, > Pi (7)

and

Lt + p, - pj < L,. (8)

In the current version if a possible interchange is found then it has been executed.
The order of checking Conditions (7) and (8) is as follows. The jobs of the most
loaded machine are compared with the jobs of another machin,- taking the other
machines in an increasing load order. The jobs of the two machines are taken in a
decreasing processing time order. One j( of the most loaded machine is compared
with all of the jobs of the other machine. If no possible interchange is found then the
next job of the most loaded machine is taken. The number of comparisons of one
iteration are O(02). To get a polynomial algorithm the number of interchanges has
been limited by m + 2. In the current version the solution provided by list schedul-
ing is the starting point. This algorithm is one of simplest possible interchanging
methods. In more general a subset of jobs can be interchanged for another subset of
jobs. In that case the complexity of the selection of the two subsets is much higher.

3 IMPROVEMENTS OF THE LOWER BOUND

The randomly generated problems have not been solved with any kind of
enumerative methods. One easy way to prove the optimality of a solution is that
the value of it and the lower bound coincide. Therefore it was important to find
some ways to improve the lower bound.

In (2) only two information are taken into consideration, the average load
and the maximal processing time. The following two sharpening of the lower bound
are based on the fact that what is the number of jobs which must be assigned to
certain machines.

Theorem 5 Assume that (4) holds. Then

C" >_ + ... + P" 0 (9)

Theorem 6 Assume that (4) holds. Let

_ n I
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/.r >

in ,p1 (10)

!n some cases there are jobs which are not effecting C*, because their pro-
cessing times are relatively very small. In that cases tile following observation is
useful.

Theorem 7 Ld S bc any subset of the jobs. Let Ls be any lower bound for the
problem defined by the jobs those In .. Then L' is a lower bound for the original

Problem. 0

Theorem 8 Let k be any Index with 1 < k < Ti. Assume that: (1) the list scheduling
has assigned until that point exactly k jobs to machines, tit) none of the machines
has more than two jobs, (iii) Pk-2 + pk-l + Pk is at least as areat as the current load
of any machine. Then the current maximal load is a lower bound for the optimal
value of the problem. C

Theorem 9 Let k be a fixed indti and

L .J

Then
t,] -1- 1 P -<

-1 COMPU1T:.ATIONAL EXPERIENCES

The computational experiences have been made in three phases. Ill the first
p)ihase about, .510.000 prolrmiis 11cloriming to differenta cl;.sses have bIeen generated.
In this phase some observations have beeii made which modified the objectives of
the research. The second phase was the main one in which 1.200.000 problems
have been generated in a wide range of problem classes to find difficult problems.
Further attempts have been made to find more difficult problems in the most hopeful
problem classes.

Definition I Let C(LS) and C( MF) and C(IC) and C' be, resp., the value of the
solution provided by the list scheduling and the multi-fit algorithm and the inter-
changing method and of the optimal solution, resp. A particular problem is called
first order difficult if the value

min{ C(LS), C(7 ( F)) (11)

C.
is high. It is called second order difficult if the value

min{ C(LS), C(IC), C((AIF)) min{C(IC). C(MF))= (12)
C- C-

is high.



591

This definition is not correct in a strict mathematical sense, because tile
meaning of the word "high" is undefined. This meaning has been determined during
the experiences.

A problem class is determined by the following parameters: m - the number
of machines, n - tEie number of jobs, p - the maximal possible processing time; the
processing times are generated randomly by the (I, p] integer uniform distribution.

In the experiences the following formulas have been used instead of (11)
and (12)

min{C(LS),C(A'MF)}
L

and

mini{C(IC), C( M F)) 14

L
where L is some lower bound of the optimal value of the objective function.

4.1 Observations of the First Phase

In the first phase only the list scheduling and the multi-fit algorithm have
been used.

At the beginning of the experiences L has been chosen as L. Some problems
seemed to be difficult although an optimal solution has been obtained by one of the
methods. In some cases this fact could be proven by one of the improvements of tlhe
lower bound discussed in Section :3.

Some problems had just the opposite behaviour. lier,,- the lower bound
coincided with the optimal value. Il malan,, cases this fact could be proven by the
interchanging algorithm. This is the reason that this method had to he involved
into the investigations.

Among the most difficult problems found in this phase there were many
such that the smallest processing time was relatively great. Therefore in the second
phase of the experiences the generation of the the problems has been modified a.s
follows. The first thousand problems has been generated as earlier. In the case of
the problems of the second thousand the processing times were increased by 1, in
the case of the third thousand by 2, e.t.c. This cannot be applied for all of the
classes, because in some cases if the increase is not less than a certain value, the
problem regardless the generated random numbers becomes trivial.

The problems which seemed to be difficult were belonging to two different
categories. The first one is the set of first order difficult problems. The most difficult
problem in this sense was the following. n = 10, r1 = 3 and the processing times are
30, 29, 24, 18, 17, 17, 17, 14, 13, 13. The solution provided by the list scheduling
is as follows: MI: 30, 17, 13; M2: 29, 17, 14; M3: 24, 18, 17, 13. The multi-fit
solution is: M1: 30, 29, 13; M2: 24, 18, 17, 13; M3: 17, 17, 14. Both of them have
the value 72. But the optimal solution is the following: NI 1: 30, 17, 17; M2: 29, IF.
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17; M3: 24, 14, 13, 13. The value of it is 64. Since that time Definition I has had
the meaning that a problem is first order difficulk if

min{C(LS),C(MF)} 9
C " >

The computationally difficult problems belong to the second category. In
the case of such a problem it is difficult either to find the optimal solution or to
prove the optimality of a solution generated by one of the heuristics.

4.2 Experiences of the Main Phase

In the second phase an intensive search has been carried out for difficult
problems. 100.000 problems have been generated in each of the problem classes.
The generated solutions are within 105% and even 101% of the improved lower
bound in the case of a very great part of the problems in each class. These results
are summarized in Table 1.

ii. turned out that none of the list scheduling and the multi-fit algorithm is
superior to the other one. This is indicated by the numbers of problems such that
the appropriate heuristic solution is within 101%. The number of problem classes
for which a method is superior to the other one is approximately is the same for
both algorithms. The behaviour of both methods are very different in the different
classes. But the "the hetter of list scheduling and multi-fit" seems to be much stable.

,)//p] 11%' 11% 105% O05D]l LS-MF IC-MF LS-MF IC-MF

10/3/15 88067 94179 98817 99897
15/3/15 95177 99441 99997 99999
10/3/30 73970 85831 97418 99815
15/3/30 89662 99002 99999 100000
10/3/60 45787 69949 94304 99582
15/3/60 80167 98599 99996 100000
30/3/15 99910 100000 100000 100000
30/31/30 99917 _100000 170-0000
30/3/r0 99132 100000 100000 100000
10/5/15 98244 98245 99043 99044
20/5/15 89275 97461 99995 100000
60/5/60 100000 100000 100000 100000

S960051 1043707 1089569 1098337
perceltage 87.2 7 94.88 99.05 99.85

Table 1: The numbers of problems having good heuristic solution
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parameters M F LS
10/3/15 87795 1318
15/3/15 7324 93662
10/3/30 73529 950
15/3/30 12688 86078
10/3f60 44898 1568
15/3/60 23804 72245
30/3/15 26577 99725
30/3/30 50626 99591
30/3/60 42090 99132
10/5/15 982:36 97997
20/5/15 3649 87973
60/5/60 100000 ] 99111

Table 2: Comparison of the list scheduling and multi-fit heuristics

The most first order difficult problem which has been found in this Thase L,
the following. n = 10, rn = 3 and the processing times are 15, 14. 12, 9, S, 1i, 8, 7.
6, 6. The solution provided by the list scheduling is as follows: MI: 15. 8, 6, 6; M2:
14, 8, 7; M3: 12, 9, 8. The multi-fit solution is: M1: 15, 14, 6ý M2: 12, 9, 3, 6; M3.
8, 8, 7. Both of thenm have the value 35. But the optimal solution is the foilowinz-
MI: 15, 8, 8; M2: 14, 9, 8; M3: 12, 7, 6, 6. The value of it is 31.

4.3 Further diffic,,t Problems

The aim of the third phase has been to find further difficult problems. Sone,2
new problem classes are introduced, because it is likely on the basis of the previous
experiences that these classes contain the desired items. At the end of this pha.sc
the number of the generated problems have exceeded 2.000.000.

The class 19/8/15 contained the known most difficult problem. The pro-
cessing times of it are: 21, 21, 20, 20, 19, 1S, 17, 17, 16, 16, 16, 16, 12. 12, 12, 11,
11, 10, 10. The multi-fit solution is: MI: 21, 21; M2: 20, 20; M3. 19. 18; M4: 17.
17; M5: 16, 16, 10; M6: 16, 16, 10; M7: 12, 12, 12; M8: 11, 11. The value of it
is 42, which is achieved at MI and M5 and M6. The solution provided by the list
scheduling with value 43 is this: MI: 21, 11, 11; M2: 21, 12; M3: 20, 12, 10; M4;
20, 12, 10; M5: 19, 16; M6: 18, 16; M7: 17, 16; M8: 17. 16; In the optima; solutio:.
the completion time is 37 on all of the machines except the last one where it is 36:
MI: 21, 16; M2: 21, 16; M3: 20, 17; M4: 20, 17; M5: 19, 18; M6: 16, 11, 10; M7:
16, 11, 10; M8: 12, 12, 12.

The development of the accuracy of the most known first order difficult
problems has been: 2 < ' < V. The value 42/37, which II not prove,, to
be an upper bound, is less than the value 72/61 guaranteed by the algorithm of
[Friesen-Langston 86], which uses many operations from a practical point of vie.

There was no improvement in the positicn of most second order .itticult

problem in this phase.
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4.4 Some Other Observations

Some other observations are obtained from the experiences. An important
,,te is the following. If L 0 U then U is far from the optimal value. The 10/5/15

class is the only one where the ratio (13) had a value greater then 1.22. The observed
greatest value is 1.42.

The aim of the improvements of the lower bound was to decrease the number
of cases to check. In Table 5 the tihe number of problems which have been proved
to be solved within 101%, and the observes worst (14) ratio observed before any
improving and after improving (without the application of Theorem 9) are provided
for the better of multi-fit and interchanging procedure.

parameters 101% j (14)
1I before after II before after

10/3/15 88078 89871 1.217 1.120
15/3/15 99344 99344 1.030 L.030
10/3/30 65089 68313 1.262 1.102
15/3/30 99098 99098 1.032 1,032
10/3/60 44046 71572 1.211 1.100
i5/3/60 99045 99045 1.032 1.032
30/3/15 100000 100000 1.005 1.005
30/3/30 100000 100000 1.007 1.007
30/3/60 100000 100000 1.005 1.005
10/5/15 37056 88469 1.412 1.200
20/5/15 . 97240 97240 1.040 1.040
60/5/60 100000 100000 100000 100000

Table 3: The effect of the im provements of the lower bound
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Abstract

Tabu Search is a metastrategy for guiding known heuristics to ovprcome ioral cp-
timality. Successful applications of this kind of metaIheuristic to a great variety of
problems have been reported in the literature. Recently some implementations cli
tabu search on parallel computers have come up. Whereas these implementations
are tailored to specific problems we attempt to provide ideas for a more general
concept for deve!-ping parallel tabu search algorithms.

1 Introduction

Dlue to the complexity of a great variety of combinatorial optimization problems, hetiristic
algorithms are especially relevant for dealing with large scale problems. The main draw-
back of algorithms such as deterministic exchange procedlires is their inability to continu"
the search upon becoming trapped in a local optimurmm. This suggests consideration or
recent techniques for guiding known heuristics to overcome iocai optimality. Following
this theme, the application of the tabu search metastrategy for solving combinatorlav
optimization problems is investigated.

The key issue in designing parallel algorithms is to decompose the execution of tl'e
various ingredients of a procedure into processes executable by parallel processors. !:npro-
vement procedures like tabu search or simulated annealing at first glance, however, I:ave
an intrinsic sequential nature due to the idea of performing the neighbourhood searcn
from one solution to the next. Therefore, there is not yet a common or generally applica-
ble parallelization of tabu search in the literature. In the sequel we attempt to describe
some general ideas and a classification scheme for parallel tabu search algorithms.

In Section 2, we present an outline of Labu search. Before describing some concepts
for parallel tabu search algorithms in more detail (see Section 4), we briefly discuss some
of the common parallel machine inodels and algorithms in Section 3. Some examples
are given in Section 5 and finally some cotichusions are drawn (Section 6). The attempt.
of course, is not to give a complele treatment of parallel talbm search hitt to sketch the

1,otential this area of research carries. For a more detailed treatment of the ideas of this
paper see VoO (1992).
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2 Tabu Search

Many solution approaches are characterized by identifying a neighbourhood of a given
solution which contains other (transformed) solutions that can be reached in a single
iteration. A transition from a feasible solution to a transformed feasible solution is referred
to as a move and may be described by a set of one or more altributes. In a zero-one
in'Leger programming context, e.g., these attributes may be the set of all possible value
assignments or changes in such assignments for the binary variables. (Then two aLtributes
denoting that a certain binary variable is set to I or 0, may be called compleme.-liary to
each other.) Following a steepest descent/mildest ascent approach, a move may either
result in a best possible improvement or a least deterioration of the objective function
value. Without additional control, however, such a process can cause a locally optimal
solution to be re-visited immediately after moving to a neighbour.

To prevent the search from endlessly cycling between the same solutions, tabu search
may be visualized as follows. imagine that the attributes of all moves are stored in a run-
ning list, representing the trajectory of solutions encountered. Then, related to a sublist
of the running list a so-called tabu list may be defined. Based on certain restrictions, it
keeps some moves, consisting of attributes complementary to those of the running list.
which will be forbidden in at least one subsequent iteration because they might lead back
to a mreviously visited solution. Thus, the tabu list restricts the search to a subset of ad-
missible moves (consisting of admissible attributes or combinations of attributes). This
hopefully leads to 'good' moves in each iteration without re-visiting solutions already
encountered. A general outline of a tabu search procedure (for solving a minimization
problem) may be described as follows:

Tabu Search

Given: A feasible solution x" with objective function value z*.
Start: Let x := x" with z(z) = z*.
Iteration:
while stopping criterion is not fulfitled'do begin

(1) select best admissible move that transforms x into z' with objective func-
tion value z(z') and add its attributes to the running list

(2) perform tabu list management: compute moves to be set tabu, i.e., update
the tabu list

(3) perform exchanges: x := x',z(x) = z(z')
if z(x) < z" then z' := z(x), x* := x endif

endwhile
Result: x" is the best of all determined solutions, with objective function value z*.

For a background on tabu search and a number of references on successful applications
of this metaheuristic see, e.g., Clover (1989, 1990), Glover and Laguna (1992), and Vo01
(1992).

IA powible stopping criterion can be, e.g., a prespecified tinie limit.
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Tabu List Management

Tabu list management concerns updating tile tabu list, i.e., deciding oil how many and
which moves have to be set tabtu within any iteration of the search. Up to now, tile Inost
popular approach in literature is to apply static mnethods like the tabu navigation method
(TNM).

In TNM, single attributes are set tabu as soon as their complements have been palt
of a selected move. The attributes stay tabu for a distinct time, i.e. number of iteration-.
until the probability of causing a solution's re-visit is small. The efficiency of the algorithui
depends on the choice of the tabu status duration, i.e. the length tlsize of the tabu list.
(In the literature often a 'magic' tl.size=7 is proposed.) For the sake of an improved
effectivity, a so-called aspiration level criterion is considered, which permits the choice of
an attribute even when it is tabu. This can be advantageous when a new best solution
may be calculated, or when the tabu status of the attributes prevent any move from
feasibility.

The static approach, though successful in a great number of applications. seems to
be a rather limited one. Another probably more fruitful idea is to define all atLribtue
as being potentially tabu if it belongs to a chosen move and to handle it in a candidate
list first. Via additional criteria these attributes can be definitely included in th_ tabu
list if necessary, or excluded from the candidate list if possible. Therefore, tile candidate
list is an intermediate list between a running list and a tabui list. Glover (1990) suggests
the use of different candidate list strategies in order to avoid extensive computational
effort without sacrificing solution quality. In the sequel, we sketch the following dynamic
strategies for managing tabu lists: the cancellation sequence method (CSM, ii, a revi,"ed
version, cf. Dammeyer et al. (1991)), and the reverse elimination method (REM).

CSM as well as REM both use additional criteria for setting attributes tabu. Thle
primary goal is to perifit the reversion of any attribute but one between two solutions
to prevent from re-visiting the older one. To find those critical moves, CSM needs a
candidate list that contains the complements of attributes being potentially tabu. This
active tabu list (ATL) is built like the running list where elimination of certain attributes
is furthermore permitted. Whenever an attribute of tile last performed move finds its
complement on ATL this complement will be elininated from ATL All attributes bet-
ween the cancelled one and its recently added complement build a cancellation sequence
separating the actual solution from the solution that has been left by the move that con-
tains the cancelled attribute. Any attribute but one of a cancellation sequence is ailowed
to be cancelled by future moves. This condition is sufficient but not necessary, as somie
additional aspects have to be taken into account so that CSM works well.

The method works well for the case that a move consists of exactly one attribute, i.e.,
when so-called single-attribute moves are considered instead of multi-attribute moves. In
addition, tile corresponding parameters have to be chosen appropriately (e.g. the tabu
list duration of a tabu attribute, and how to apply the aspiration level criterion). Ap-
plying CSM to miulti-attribute moves needs additional criteria to prevent errors caused
by uncovered special cases. E.g. for paired-attribute moves (moves consisting of exactly
two attributes) those moves must be prohibited that may cancel a cancellation sequence
consisting of exactly two attributes (because none of them is tabu when choosing a move).
In addition, for building a cancellation sequence, the remaining attributes of the oidef
and the currcnt move are not necessarily taken into consideration. This depends on the



598

order in which the move's attributes are added to ATL.
The conditions of [NM and CSM need not be necessary to prevent from re-visiting

previou-ily encountered sohitions. Necessity, however, can be achieved by ITEM. The idea
of REM is that, any solution can oonly be re-visited ii the iicxt iteraLion if it is a neighbour

of the current solution. Thercfore, in each iteration the running list will be traced back

'.., determine all move- which have to be set tabu (since they would lead to an already

e-xp!ored solution). For this purpose, a residual cancellation sequence (RCS) is built up

stepwise by tracing back the running list. li each step exactly one attribute is processed,

from last to first. After initializing an empty RCS, only those attributes are added whose

complements are not in 6he sequence. Otherwise their complements in the RCS are

eliminated (i.e. cancelled). Then at each tracing step it is known which attributes have

to be reversed in order to turn the current solution back into one examined at an earlier

iteration of the search. If the remaining attributes in tLie lCS call be reversed by exactly

one move then this move is tabu in the next iteration. For single-attribute moves, for

instanice, the length of ai IW(S imist he (meI to e•.force a tabli move. Correspo!idiigly, ill

a slightly modified iuethod REM2 all cointitioit neighbours of the current solution and of

an already explored one will be forbidden. These neighbours were implicitly investigated
during a former step of the procedure (due to the choice of a best non-tabu neighbour)

and ne" not be looked at again (cf. VoB (1992)).
Obviously, the execution of REM and of REM2 represents a necessary and sufficient

criterion to prevent from re-visiting known solutions. Since the computational effort of

REM increases if the number of iterations increases, ideas for reducing the number of

computations have been developed (cf. Glover (1990) and Dammeyer and Vofi (1991a)).

For applications and (sequential) comparisons of TNM, CSM, and REM see Dammeyer

and VoB (1991b) and I)omschke et al. (1992).

Search Intensification and Search Diversification

A general idea for reducing the comnputational effort ii a tabit search algorithm is that of

search intensification using a so-called short term memory. Its basic idea is to observe the

ittributes of all performed moves and to eliminate those from further consideration that

have not been part of any solution generated during a given number of iterations. This

results in a concentration of the search where the number of neighbourhood solutions in

each iteration, and consequently the computational effort, decreases. Obviously the cost

of this reduction can be a loss of accuracy.

Correspondingly, a search diversification may be defined as a long 1crm memory to

penalize often selected assignments. Then the neighhourhood search can be led into not

yet explored regions where the tabu list operation is restarted (resulting in an increased

computation time). An appealing opportunity for search diversification is created by the

idea of REM and REM2 resulting in REMt for I > 2 and integer. If at any tracing

step the attributes that have to be reversed to turn the current solution back into an

already explored one equal exactly t moves then it is possible to set these moves tabu

Sor the next iteration. Note that for the case of multi-attribute moves., due to various

combinations of attributes to moves, even more than i moves may be set tabm in order to

avoid different paths through tLie search space leading to the same solution. Accordingly,

search diversification is obvious.
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3 Parallel Machine Models

Over the years a great variety of architectures have been proposed for parallel computing.
"nie most widely known classification of parallel machiine models (although somehow
limited) is given by Flynn (1966). lie distinguishes four general classes based on the idea
of whether single or multiple instruction streams are executed on either one or multiple
data set streams:

"* SISD (Single Instruction, Single Data) including the classical sequential computers

"* SIMD (Single Instruction, Multiple Data) including vector computers and array
processors

"* MISD (Multiple Instructions, Single Data)

"* MIMD (Multiple Instructions, Multiple Data) with the processors performing each
successive set of instructlions either simultaneously (synchronous) or independently
(asynchronous)

The above classificatioti of parallel macline models may lead to different classes of
parallel algorithms. V'ctorized algorithms operate imiformly on vectors of data sets
(SIMD). Systolic ones operate rhythmically on streams of data sets (SIMD and synchro-
nous MIMD). Parallel processing algorithms operate on a set of synchronously commu-
nicating parallel processors (synchronous MlMID). Correspondingly, asynchronous comim-
munication leads to distributed processing algorithms (asynchronous MIMD and neural
networks).

In addition to architectural aspects communication networks are used to classify par-
allel machine models. For instance, it makes a difference whether processors have si-
multaneous access to a shared memory, allowing comnunication between two arbitrary
processors in constant time, or whether they communicate through a fixed interconnection
network. Less formally, in certain models it is assumed that there is a master processor
controlling the communication of the network, with the remaining processors of the net-
work called slaves. For a comprehensive survey on parallel machines and algorithms see
e.g. Akl (1989) and Van Leeuwen (1990).

The quality of parallel algorithms may be judged by a number of quantities, the most
important one being the speedup, which is the running time of the best sequential imple-
mentation of the algorithm divided by the running time of the parallel implementation
executed on a number of p processors. Similarly, given a prespecified time limit (cf. foot-
note 1) a scaleup may be defined as the ratio of the average problem sizes solvable with
a parallel implementation to a sequential implementation of the algorithm. With heuri-
stics, the solution quality attainable may also he measured. The processor utilization or
efficiency is the speedup divided by p. The best one can achieve is a speedup of p and an
efficiency equal to one.

4 Parallel Tabu Search Algorithms

Due to the success and the underlying simplicity of the main idea of tabu search, recently
some implementations on parallel computers have come up tailored to specific problems.
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Surprisingly, to the best of our knowledge, they are solely devoted to problems using the
notion of paired-attribute moves: the travelling salesman problem, tle job shop problem.
and the quadratic assignment problem (compare Section 5).

In a first step we shall describe a classificahzon of different types of parullclism that
is applicable to most iterative search techniques (rf. VoA (1992)). Its basis is the idea of
having different starting solutiolis or candidate solutions (so-called balls, motivated by the
idea of mountains' !ike solution space where a ball is rolling to find a stable low altitude
state) as well as a number of different strategies, e.g. based on various possibilities of the
parameter setting or on the tabu list management.

" SBSS (Single Ball, Single Strategy)

The algorithm starts froim exactly one given feasible solution and performs its rnovei
following exactly one strategy.

"* SBMS (Single Ball. Multiple Strateqies)

The algorithm starts from exactly one given feasible solution by the use of differe,,t
straLegics where each strategy IS perfornied oil a dilri-ei processor.

"* MBSS (Mulliple Balls, Single Stralcgy)

The algorithm starts front different initial feasible solutions, each on a different pro-
cessor. The same type of instruction, i.e. strategy, is performed on each processor.

"* MBMS (Multiple Balls. Multiple Strategies)

The algorithm starts from different initial feasible solutions perforriniig different
Atratcgies.

in w'Qat follows we discuss the above ideas in unore delail with special emphasis on
further principles of parallelism within specific strategies. For ease of description we
assume the notion of parallel or distributed processing algorithms.

SBSS

The single ball, single strategy idea is the simplest version, amid obviously corresponds to
lie idea of classical sequential computatioiis (cf. the SISI)-inodel). This, however, does
not restrict the possibility of parallelizatioii.

Starting from an, initial feasible solution, the best move which is not tabu must be
performed. The search for this move may he donie in parallel by decomposing the set of
admissible moves iite, a number of sbsots. E.g. in a master-slave architecture each (slave)
processor imay evaluate the best move in a specific subset. The best move of each subset
is communicated to the master who picks the overall best as the tratisformned solution atid
also performs the tabu list maniagement.

T: restrict the amount of (ommulnicatioi necessary for synchronizing the data each
slave could determine the best. possible move in its subset without observing any tabu
list, while the tabn list in the same time is ud)(lated by the master. Then the master picks
among all answers the best which is not tabu. If no such move exists, a second trial must
be made while each processor has to receive and to observe tie tabin list. Otherwise the
next iteration is to be performed.
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Additional ideas may be developed with respect to the specific strategies. In TNNM,
the tabu list management may be done by each processor itself by simpiy providing the
most recent move (whlose Con)lCittctt will be iu t.he list). In CSM, tile nta.9ter d%;Iitdk.l.h
cancellation sequeuces and partitions them to the slaves. i.e.. every 5•ve has Cf E,,,,!,

a certain number of sequences. In subsequent iterations. i.he attributes ol the vilrrewi;
moves are communicated. Whenever i cancellation sequencC Vs reduce(i to I it wil i
re-communicated to the master.

SBMS

In SBMS each processor executes a process which is one of the above 0aJm '.e,:ch s ,. c:
with different tabu conditions and parameters. like e.g. REMt for various t. For T'NM Lfth
can be different (eventually randomly modified) tabu list lengths; for CSM, diffyrrcrl. tLab,:;
durations may be considered. The (slave) processors are halted after a prespzc:if-d ,ime
and the results are compared and the best one is calculated. A restart is possible w;th tlie
best or a good seed solution. Each strategy may take a different path through the search
space because of different tabu list management or parameter setting. A restart ma.y b-
performed either with empty running and tabu lists or with a previously encountered list.

MBSS

The multiple balls approaches start from at most p (the number of processors available,
different initial feasible solutions, whose calculation can vary. They may he determined
either randomly or by applying different heuristics to the same problem. Tiis may at,(o
incorporate ideas involving different diversification and intensification strategies as des-
cribed above. A third possibility assumes one given feasible solution and starts with a
suitable subset of its transformed (neighbourhood) solutions. (Especially with REM2 it
may he assured that even in future iterations there :s no overlap with the initiai feasilhe
solutions of the other processors.) The single strategy approach assumes Imhe afpplicatiol'
of exactly one tabu search algorithm with the same parameler setting for all processors.

As with SBMS, the processes may be halted after a specific time period to coordinate
their results and possibly to initiate a restart with new (hopefully) improved solutions
If the processes are performed synchronously, then the stopping may be initiated after
having generated, say, m successive moves. On synchronous MIMD machines the iatter
approach may be especially relevant. Note that the above-mentioned possibility of pa-
rallelization within SBSS is related to a method with m = I where the best transition is
evaluated. 2 With respect to MBSS, this modifies to the evaluation of the p best moves
usable for a restart. For m > 2 this approach may be used as a look ahead method.

MBMS

The multiple balls, multiple strategies approach subsumes all previous classes, allowing
search within the solution space from different starting points with different methods or
parameter settings.

'This gives reference to incorporate different candidate list strategies. (Note tme correspondance to
ideas of beam search, cf. Clover (1990).)
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6 Examples

zc the --:quei i•e keLch somei O" xe ideas ýilven in the previous sections with respect to well

;hnown cjmibinatorial optiim,ia iom pirobulems. As mentioned above, we only found some
,•ork on pronlems with the i(Id, of paired-attribute moves to puerform the neighbourhood
-e;kr:'q ',Vc sbart with r'sp'c, tI *i narv integer programming, exploiting single-attribute
:nOVes'.

Consider the S113SS coucpt. \lso consider it decision variables it a binary problem

,ith to (iinpiicit or expliciti restriction on the number of variables set to either I or 0. We

mnay define simple ADD- ,,r i)!D()P-moves b)y complementing the corresponding entries
')f the binary variables z,. Assume the existence of it + 2 processors with n + 2 being

the master processor. '[lhe tabu list management is performed by processor i + 1. li
any iteration of the search, each of the synchronously controlled processors 1 E { I t.
receives the information whose variables" erntry has becn chosca to be exchanged as the
most recent move. This ,iiove is performed together with tile reversion of x,. This usually

,.an be done quite efficiently by reconstructing the previous soitio stored at with at
ýno.t one assignment compleniented. Then t offers its objective function value to the
,uas~er who re-calls all resmilts of Iio(essors referring Co ioti-lalu imoves (evaluated by
,ýro(:Cssor it + I' ). (1,oviusiy hifs approacii ,iay be generalized it various ways to the more

,cenerai classes described above.

This concept may be applied. e.g., to the warehouse location problem (WLP), to
i'Leiner's probiem in graphs (iSP). and to the inmulticonstraimit zero-one knapsack problem
(MCKP). E.g., for W1,I1 this neughlmrt.ood search tneans a reallocation of '.UAmbLets.

i.e., upening a new hocatioi" results in re-allocating all costumiers for which I is closer
!.han the depot currently isevd. Correspondingly, closing a location I forces all costumers
receiving service froim z to its seconld nearest. location.

An even" more cihallengihg reoptinization problem arises within SR. There, an itera-
zion of tile neighbourhood search may consist of changing a node-oriented binary variable

,,d calculating a iniimum spanming tree (MST) on the set of all nodes with entry 1 of

",he corresponding variables. The question is, whether reoptimization may be carried out
either by solving the modilied problem anew or by starting from a previous optimal solu-

tion tound by the same proccssor (see (lover et al. (1992) for a corresponding sequential

approach with respect to MS'T).
If the number or weighted number of variables with valuic I is limited (as for MCKP)

or fixed (as e.g. in the p-medlian problem) then tile saime approach may be applied with

combined ADDi/)IROlP- or SWAIP-moves leading to paired-attribute moves.

Malek et al. (1989) follow 1lie SlIMS approach to solve travelling salesman problems

(TSP) by TNM with the 2-opt exchange as movie. The tabu attributes follow different

strategies in that they are restricted either to one or to tie two cities that have been

swapped or to the cities and] their respective positions in tour. hii addition different tabu

Parameters were used on differefnt processors. For another parallel tabu search algorithm
for bile ']SP see Fiechter ( i990).

The quadratic assignment problem (QA P) is treated by Chakrapani and Skorin-Kapov

(1991, 1992) by the use of SISS and TNM with search intensification and search diversi-

iication performed sequentially while evaluating time inoves in parallel. The set of moves

;s partitioncd into disjoint subsets, each one on a different processor as described above.
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The neighbourhood search is performed by pairwise interchanges such that for (u:flz:
processors available all moves can be evaluated in constant time, achieving a spedtui, (J
O(n 2/logn). Battiti and Tecchiolli (1992) use TNM together with a ihasting fruic,j.;ij
and compare their algorithm also with a parallel genetic algorithm. Another !1ra:I a!
gorithm lor QAP based on TNM (with randomly varying tlsize? hi:s betzji pftvellot'J 6'
Taillard (1991). It is an SBSS approach, too. The same idea has also beell anoplied U-, 1hc
job shop as well as to the flow shop problem (see Taillard (1989, 1990. 'IThe iatier :'
fact, also describes a single-attribute based implementation A 'ith attributes correspondina
to objective function values. Chakrapani and Skorin-Klapov (1992) is especiaily relevant
since its implementation is based on a connectionist approach related to) a lohz"-.ail
machine (cf. Aarts and Korst (1989)).

6 Conclusions

We have summarized some ideas for developing parailel tabu search aigorithm3. Molylouvat'
by a famous classification scheme for parallel machine models we proposed a Cla.ssiicat':,7
scheme for parallel tabu search algorithins. While research in this field is still in its infancy
we believe that reasonable achievements in the following two aspects will be provided.

* Development of a framework for a general parallel tabu search algorithm that can

be applied to a wide range of combinatorial optimization problems.

* Empirical results for parallel tabu search algorithins tailored to specific problems.

Some results known from the literature (cf. Section 5) support this feeling. Despite •:a'
emphasis on parallel tabu search, sequential testing is still far from complete. In addition.
the tabu search metastrategy should be tested on different classes of parallel algorithnis
and machine models. Especially relevant seems to he a comparison of algorithms Lai-
lored to different hardware specifications like vector contputers versus synchronous imi
asynchronous MIMD machines. However, one should take into account identical us-r
specifications with respect to tabu search (e.g. parameter setting, definition of the neigl,
bourhood). Note that our classification scheme is not restriced to parallel tabu seare).
but may be applied for nearly any iterative search procedure, such as simulated anneafirz
or genetic algorithms.
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The work of a transport company (bus, train, etc.) may be

represented by a schedule which specifies the journeys to be

undertaken. Figure 1 is a graphical representation of part of

such a schedule, with each line showing the times that a service

begins and ends, and each '+' showing the time of a relief

opportunity at which the driver of that service may be replaced

by another driver. An indivisible period which must be worked by

the same driver (e.g. between two consecutive relief

opportunities) is called a workpiece.
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Figure I - Graphical Representation of a Schedule
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Each driver's working day consists of a number of workpieces. A

7omnplete specification of a driver's working day, including

sign-on. sign-,jff and mealbredk times. is called a duty. Every

transport company has many conditions that its duties must

satisfy, usually called the "union agreement". This agreement may

specify, for example, the maximum length of a working day and

durations of mealbreaks. There is usually a very large number of

different duties that could be used to cover a schedule.
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There are several computer systems which can be used to determine

a set of valid drivers' duties to cover a schedule provided by a

transport company. This paper will consider enhancements that

have recently been devised for one 3uch system calied IMPACS

(Integer Mathematical Programming for Automatic Crew Scheduling).

This system was developed at the University of Leeds by Wren &

Smith[l] and is now marketed by the Hoskyns Group. :MPACS has

mainly been used by bus companies (throughout the world) but it

has also been used by train and tram companies.

At the heart of the IMPACS system is an integer Programming model

which has two pre-emptively ordered objectives: to minimise the

total number of duties used to cover a given schedule and to

minimise a cost function which reflects both the wage cost and

undesirable features of duties. The model 's constraints ensure

that all workpieces are covered at least once. with some

specially selected workpieces being covered exactly once. Also,

each duty is classified according to its type (e.g. early, late.

overtime) and side constraints can be added which limit the

number of duties of any type that are to be used.

Thus. the model is of the mixed set covering/partitioning type.

possibly with the addition of side constraints. Onaoing research

attempts to exploit further the special structure of the IMPACS

model and to take advantage of recent developments in

mathematical programming algorithms.



608

The 1MPACS model has previousiy been solved using the following

four-stage process. For the first three stages, the Linear

Programming relaxation of the model is used.

Stage 1 Minimise the total number of duties using a Primal

Simplex algorithm.

Stage 2 Add a constraint which ensures that the integral number

of duties does not increase and minimise the cost

function using a Prima! Simplex algorithm.

Stage 3 If the total number of duties is not integral. add a

suitable constraint, and reoptimise using a Dual

Simplex algorithm.

Stace 4 Determine an integer solution using Branch and Bound

techniques with constraint branching.

Optimisation within the IMPACS system is based on Ryan's ZIP

package[21. The performance of this package has been improved by

incorporating Goldfarb & Reid's Primal Steepest Edge algorithm[3]

and a Dual Steepest Edge algorithm due to Forrest & Goldfarb141.

This paper will consider a new strategy for solving the Linear

Programming relaxation. Enhancements to stage 4 are the subject

of separate work.
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Each of stages I and 2 of the previous strategy typically involve

a large number of iterations, resulting in the time to sol-.- che

Linear Programming relaxation being a significant proportio!, ot

the total solution time. This is due to the objectives for stages

1 and 2 being different and the high degree of degeneracy

inherent in the model. -Also, the constraint that is added at

stage 2 is fully dense, and this substantially increases

iteration timings.

These difficulties have been addressed by:

1. Using a single weighted objective function.

and 2. Solving the resulting model using a Dual Steepest Edce

algorithm.

The weight that is used to combine the two objectives is

relatively small, and is determined by applying an algorithm due

to Sherali(5] to the IMPACS model. To initiate the Dual Simplex

algorithm, an heuristic has been developed to produce initial

basic dual feasible solutions.

The paper will conclude with the presentation of computationa;

results for real world problems with numbers of constraints in

the range 125 to 450 and numbers of variables in the range 4000

to 11000. The results suggest that the new strategy significantliy

reduces solution timio-gs.
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DERIVING THE DUAL OF AN INTEGER PROGRAMME:
ITS INTERPRETATIONS AND USES

H.P. Williams
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This talk will begin by discussing duality in Mathematics in a widei
context e.g. in the areas of Set Theory and Logic, Projective Geometry anc
Convex Polytopes. Some of the mathematical properties which are normali."
expected of a dual will be listed e.g. Reflexivity and Symmetry. Linear
Programming (LP) and Congruence duality will then be examined for botth its
mathematical properties and computational and economic uses e.g. Provirc'
Optimality, Sensitivity Analysis and Pricing Imputation.

A number of possible Integer Programming (IP) duals wil! r
mentioned e.g. the Gomory-Baumol dual, Lagrangean dual and Surrogaie
dual. They all lack some of the above properties and in particular do not
provide a guaranteed proof of optimality.

It will be suggested that the most satisfactory dual arises from
examining the Value Functions and Consistency Testers of IPs. For Pure
IPs (PIPs) these take the form of Gomory Functions. Gomory functions are
built up by the repeated applications of the operations of

(i) Non-negative finear contributions.
(ii) Integer round-up.

(iii) Taking Maxima.
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T'nese can be expressed in the form

MaxtC1I, C2, ... Cn)(1

where the Ci are Chv4tal- Functions which are built up from operations (i)
and (ii).

By comparison the Value function of the Consistency Tester of the
corresponding LP relaxation will involve functions of the form

Max(Cl, C2, ... , Cr) (2)

where r < n and C; is obtained from Ci by dropping the operation (ii).

The Ci will therefore be non-negative linear conbinations of the right-
hand-side coefficients, arising from the dual vertices of the LP.

It will be shown that those Ci which correspond to a Ci in (2) can be
obtained by finding the Value function of PIPs over cones. This may be done
by obtaining the Hermite Normal Form of the corresponding basis matrix for
the LP relaxation. The resulting doubly recursive function of the right-hand-
side coefficients gives the Value function (and Consistency tester). It is
suggested that the depth of this recursion is a measure of complexity. The
problem of extending this method to give the Value function and Consistency
tester for a general PIP will be considered.

it will be shown that the Value function for a Mixed IP (MIP) is not
generally a Gomory function although the Consistency tester is. By
incorporating this objective as a constraint and finding the consistency tester
of this system it is then possible to characterise the Value function of the
MIP.

The Value function for certain MIP applications has considerable economic
importance since it shows how indivisible resources should be "priced". This
aspect will be considered in relation to the Fixed Charge Problem and the
Power Systems Loading Problem.



1 General Problem Description

Analysts frequently face the following problem: given a multivariate (possi-
bly correlated) population, how does one determine a good estimate of the
probability function (or some number of its moments) for a complicated func-
tion of the poriulatior's variable.s? The primary problem to consider tLhen i•
what is the most etlffcient way to sample from the input population, espe-
cially when sampling is extremeiy expensive and must therefore be limited
to a predetermined (small) sample size. The desire is to generate a sampling
plan which will be representative of the population, and produce estimates
of moments which have desirable statistical properties. However, since the
larger the sample, the larger the cost, there is a trade-off between generating
the best estimates and reducing the amount of sampling. In order to obtain
better estimates from sampling, analysts may determine them by using data
collected from a stratified sampling of the population.

A special form of stratified sampling is latin hypercube sampling.
In this stratification, the cumulative distribution function for each of the
n population variables is divided into m blocks. The intersection of these
blocks makes up a hypercube having mn cells. If all rn' cells were sampled.
the sampling approach would be a "full factorial design". Since sampling
is assumed to be expensive, LHS limits the sampling to only m of the rn'
possible cells. Thus, a LHS plan is not a hypercube. but is equivalent to a
rn x n matrix such that each of the m rows defines one sampling cell of a m'
hypercube.

The ith row of a LHS sampling plan makes up what will be referred
to as "run i". Defining this grouping as a run is motivated by the fact
that typical applications of LHS involve computer-based models where the
number of runs, m, is predetermined. To ensure that a plan offers a cross
section of the sampling space, an additional feature of LHS is that each block
of each variable must be picked once. Thus, each column of a LHS plan is a
permutation of the numbers 1 to m.
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Combinatorial optimization, by its broad nature, has been used
to model and solve a variety of problems including those arising in decision,
engineering, and physical sciences. The focus of this work is to consider
the solution of a sampling design problem using combinatorial optimization.
The particular design problem of interest here is minimum-correlation latin
hypercube sampling (hereafter referred to as MCLIfS). The central point of

this research is the development of combinatorial optimization procedures
which provide MCLHS plans. This is an entirely new approach for finding
MCLHS plans.

We introduce integer programming (IP) formulations of this problem
and develop a procedure for determining minimum-correlation sampling de-
signs. We provide the obvious IP formulation of the MCLHS problem which
results in a problem having an exponential number of variables and a large
(polynomial) number of constraints. We then transform the problem into
a sequence of assignment problems with side knapsack equations, having a
polynomial number of variables. This decomposition was found by exploit-
ing the special structure of the problem and finding tight objective function
lower bounds. We note that even after the decomposition, the problem still
belongs to the NP-hard class. Although the decomposition and subsequent
development of solution procedures for the smaller problems are discussed
within the context of the sampling design problem, the approach may be
applicable to various permutation-related IP problems such as the general
quadratic assignment problem, assignment problems with side constraints,
and the asymmetric travelling salesman problem variation where the objec-
tive is to find a tour which meets a specific cost value. Thus, while the
research presented here focuses on solution approaches for the MCLHS prob-
lem, the general theory and findings might well prove useful for the solution
of other problems known to be NP-complete.

We begin with a description of the general LHS and MCLHS problems,
followed by integer programming formulations and a discussion of optimiza-
tion procedures developed.
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To describe the standard approach to LHS, we begin by writing the
vector of variables as (X 1 , X 2, ... , X,,) and assume for the time being that the
variables are mutually independent. The range of each X, is divided into m
(= number of runs) ascending intervals of equal probability and a random
value is drawn on each interval for each variable. Next, we generate the order
in which the m values of each variable are to be used in each run by creating
a sequence of n random permutations of the integers I to tn. Finally, we
form the required vector for the ith run by taking the z`" number from each
of the n random permutations.

Latin hypercube sampling plans generated by the staudard approach
are restricted only in the sense that for each variable, a value must be picked
once and only once from each of its m intervais. A point we have not vet
considered is the impact that correlations between tthe coiumns of a LHS sam
pling plan may have on the generated estimates. tFor ease cf explanation, we
will continue the assumption that the population variables are mutually in-
dependent. although similar results are obtained for any given population
covariance matrix. For the n variables, although their sampling plan permu-
tations are determined independently, a standard LHS plan will, in general.
have some level of correlation between the pairs of permutations. Thus, the
sampling plans will not, in general, parallel the correlations of the true joint
distributions. If LHS sampling is done without concern for the correlation
pattern (or lack thereof), the estimators cannot be guaranteed to be unbiased
or even consistent.

The desire then is to design LHS plans which incorporate the vari-
ables' true pairwise correlations. For two variables, Xi and Xj, with distri-
bution functions having strictly positive standard deviations, a, and aj, the
correlation coefficient between the variables is defined as

Pii = cov(X, X)

where cov(Xi, Xj) denotes the covariance between variables X, and V,.
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To approximate the pairwise correlation coefficients pj,, we will con-
sider the correlation coefficients between the pairs of LHS plan permutations
associated with variables X1 and Xj. (The two forms of correlations are equal
when X, and X, are both uniformly distributed.) For permutations of the
integers from I through mr, it can be shown that the correlation coefficient
of the indices of any pair of permutations is

m(m 2 - 1)'

where Dv is the difference between the vt h integer elements in the vectors.
This is known as the Spearman rank correlation coefficient and can take on
values in the interval [-1, 1]. The expected value of the rank correlation
coefficient is 0, and its variance is 1/(m - 1). Throughout the remainder
of this paper, we denote the rank correlation estimate between the column
permutations of variables Xi and X, by t,,.

For illustration, suppose we want to run a model with three mutually
independent uniformly distributed variables (for simplicity, X, y, and z),
each to be represented by values chosen from their respective sample spaces.
Assuming further that we are allowed only six runs, consider the LHS plan
given below:

Table 1: Latin Hypercube Sampling Example

Model Run Variable Values
1 Xi Y1 Z5

2 X 2 Y6 Z3

3 X3  Y5 z 4

4 X4  Y3 Z1

5 X 5  Y2 Z2

6 X 6  Y4 Z6

The rank correlation coefficients for this example are

ý12 = 0.00, r23 = 0.00, ?13 = 0.00,

and hence, it appropriately models the mutual independence of the three
variables. If, for example, the variables were dependent with true joint dis-
tributions having pairwise rank correlations of say, r1 2 = -. 6, r 23 = -. 42,
and r13 = .14, then this particular sampling plan would not suitably parallel
these true rank correlations.
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The objective of the restricted LHS problem we consider is the selec-
tion of column permutations which attempt to meet exactly the true rank
correlations associated with the variables. In this way, sampling is intended
to match more closely the true marginal distributions of the input vari-
ables. Specifically, the minimization problem, called minimum-correlation
LHS (MCLHS), provides a sampling specification minimizing the sum of the
absolute values of the pairwise differences (r,j - rej). In much of the discus-
sion however we will minimize the sum of the absolute values of the pairwise
rank correlations iýj. This models the situation when independence of the
variables is likely (i.e., rij = 0).

2 Integer Programming Models for MCLHS

The minimum-correlation latin hypercube sampling problem described can
be formulated as a n-index assignment problem with side knapsack equation
constraints (APSEC). To begin, define:

Sif viv 2 ... v,, is a sam pled cell
where the n-indices on the x-variable,

v1,v2 ,... ,v,,, can each take a value from 1 to 7-z

0 oth,-rwise

and also d+, d- E R't such that:

d+ - di-= (÷ij-rii) m(m - 1)/6 i1 .. n, J >iZ.

Thus, d+ and d- are the positive and negative magnitudes of the devia-
tions from the true rank correlation of the rank correlation between column
permuations i and j.

Equivalent to minimizing the sum E•=2 E- 1 m•( )i- j
minimizing the objective function

min {iiI Z (d++d7)}.
i= >i
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Although the formulations described below are applicable to cases
with nonzero rj, for ease of presentation, we will assume rij = 0. It can be
shown that

m(m 2 - 1)i/6 = m(m2 - 1)16 - D2O

will be integer-valued for all pairs of permutations. Thus, we can now define
dit+ d. E Z' such that:

d+ - d- = m(m 2 
- 1)ýj/6 i =1... n, j > z.

In order that the IP formulation fully encompasses the MCLHS, it
must include assignment constraints that draw a one-to-one correspondence
between the positive-valued X', ...,V, of a feasible solution and n-tuples of col-
umn permutations. Thus, the 1h column permutation requires the m assign-
ment constraints

In rn

V, = .v2=1 V-=1

excluding ,

Additional constraints are needed to enforce that
m(rn2 - 1)•/6 = dt -d• holds for all i and j, i < j < n. These constraints
are

E E E (Vi- vj,)2 •x,.... = m(m' - 1)/6 V ' <I j n

In addition to belonging to the class of NP-complete problems, we see
that this formulation requires Mn x-variables as well as a total of n(n - 1)
deviational (dt,d-) variables. There are nm azsignment constraints and

(n) constraints to ensure that m(M 2 - 1)>i,/6 = d+ - d-. Hence, although
this formulation is the most straightforward, we will present other APSEC
formulations which have more reasonable problem size growth.
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To develop alternative formulations, we use the objective function
lower bound of ()6/(m(m2- 1)) when m = 2 + 41 for some nonnegative
integer 1, and zero otherwise, and make the assumption that given k - 1
column permutations with minimum k- 4 I ý 1, it is possible to fix
these columns and find an optimal kth column permutation. Our research
and empirical results have shown that these are valid assumptions.

Suppose we have a solution to the (k - 1)-dimensional problem, and
wish to use this solution to obtain a solution to the k-dimensional problem.
Let (pl,p 2,... ,pk) denote the corresponding column permutation vectors,
and define

I if the ieh element of column k
X { is assigned value j

0 otherwise

To ensure that column k is a permutation of numbers I ... n , we add the
assignment constraints :

z,,i = 1 m

We see that the positive elements of an x-solution define a kth column. We
will henceforth interchangably use the terms "an x-solution" and "the kth
column defined by the positive elements of z".

There are (k - 1) additional constraints of the following form:
(1) d+ -d- =rM(M 2 -1)/6- F__nL _=1 (p -j) 2Xj t= 1,...,k-

where p! is the iZh entry of the column permutation vector p'. With these
constraints, we implicitly fix the (k - 1) previou,'ly found column permuta-
tions.
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The formulation defined thus far with objective function

k-i
min Z(dik + d),

t=1

is a general formulation for finding a kth column permutation, having fixed
the (k - 1) column permutations that minimize E-' fi I . Empirical
evidence strongly supports that there exists a k"h column that meets the
lower bound for I rik 1, i = 1,... , k - 1. Hence, there will exist a solution to
the assignment constraints that generates a kh column satisfying

n(-n' - 1)÷ik/6 =

{ 1 if tn=2+41, 1EZj+
m m2 - 1)/6- = otherwise

for all i = I,.. k - 1. To incorporate this into the formulation, we require
that d+ and dj, l = .k - i be binary variables. For
.n 4 6 + 41, 2 E Z4, any solution that obtains the lower bound must have
d+,+ d- = 0. If however, m = 2 + 41, 1 E Z+, we can conclude that
d+t +d = 1, t = I,... k - 1. In either case, the problem can be restated
as a feasibility problem with no objective function. We shall refer to this
feasibility assignment problem with side equations as FASE.

The FASE formulation follows the conjecture that one can itera-
tively solve k-dimensional problems using the previously determined (k - 1)-
dimensional solutions. Thus, rather than solving one large APSEC program
with m" + n(n - 1) variables and nm + (n) constraints, one could solve a
sequence of smaller two-dimensional FASE problems with at most m 2 + 2k
variables and 2m + k constraints ( 2 < k < n ).

In the presentation, we shall discuss heuristic and Lagrangean-based
solution procedures developed to solve the MCLHS problem and its equiva-
lent formulation FASE.
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Abstract

This paper describes a standard for the use of GAMS 2.25 as an
object-oriented modeling language. The over-riding benefit of using
this technique is the ease with which many individuals can simulta-
neously develop extraordinarily complex modeling systems. Lesser,
but still important benefits include: structured user-interface design,
plug-in/plug-out models, isolating portions of the problem, easy main-
tenance and updates, and model re-use. Simultaneous model devel-
opment stems from the latter benefits, while all of these advantages
derive from the clear, rigorous organization of your model as specified
in the following standard.

We present the concepts of encapsulation (forming objects) and hi-
erarchical modeling in the context of mathematical modeling. Encap-
sulation is a well-known programming technique that is newly applied
to modeling, and our version of hierarchical modefing differs slightly
from past notions. Traditionally, a hierarchical model embodies the
concept of forming larger models from a collection of sub-models. The
following method is based on a partition of the relations (equations) of
the model, where the elements of the partition are partially ordered.

1 Overview

Object-oriented modeling (OOM) is a method of modeling that closely im-
itates object-oriented programming (OOP) [?,?,?]. We have developed a



I

standard for using GAMS 2.25 [?] as an OOM language. The difference be-
ing that the 00 models are much more structured and abstract. This makes
them more user friendly because their use is well defined by the structure
and their details are hidden within. 00 Models thus appear simpler and
more uniform to the user.-

Four essential properties set OOM apart from standard GAMS 2.25:

Routines: Structuring the assignment statements into procedures as in Pas-
cal.

Encapsulation: Combining data and variables with the equations and as-
signment statements that manipulate them to form a new data type-a
model.

Information Inheritance: Defining a model that uses other models in its
formulation, with each sub-model inheriting the information from its
ancestors. The use of models within models defines the use hierarchy
which forms a partial ordering of all used models.

Polymorphism: Giving a model's routine one name that is shared by all
descendants in the use hierarchy, with each descendant implementing
the routine in a way appropriate to itself.

Routines are implemented using the $INCLUDE statment. Encapsulation,
inheritance, and polymorphism are implemented in GAMS 2.25 through self
discipline. The following is a detailed discussion of the principles and im-
plementation of OOM in GAMS 2.25 through self-discipline. We hope that
the future will bring the language extensions need for a proper implementa-
tion. In which case, the standard described below would be enforced by the
compiler.

There are now a variety of experimental modeling languages offering
object-oriented features, notably ASCEND [?] and MODEL.LA [?]. We of-
fer a form of inheritance that differs from the class inheritance of standard
OOP and OOM languages. This is an extra restriction placed on our models
based on deferred requirements, and the use of models within other models.
Data and variables are legated (passed down) to the descendants, while meth-
ods are used by ancestors to ensure that deferred information' is properly
defined.

Data and variables that have been declared but are yet undefined.



There is a restricted form of communication contro! betw~'vn th, ,.ve.:Ln ,
the use hierarchy. Essentially, desccndants can inspect z.nce:.L inxor,.uc;;
but ancestors can oa,,y ask that certain information be provided. la this -,ay.
siblings communicate through the parent, and its deferred inforrmatiCin.

We further expound on these concepts and offer a full accounting of t!'e
presentation. First we introduce a model and how it is encapsulated. ',iK
leads to an overview of traditional hierarchical modeling. Then we exDiain
how OOM fits into this background. The final section gives the standiaru
itself-how to implement OOM in GAMS 2.25.
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EXTENDED ABSTRACT

1. Motivations for a formal theory.
"The definition of a specific model is often conceived as a work which has to be done

from scratch. In fact, the variety of the variables describing the modelled reality seems to
exclude the possibility that a model can be defined assembling pieces of correlated sub-
models. i o define models from scratch greatly decreases the productivity of the work.

It seems that the keyword in increasing modelling productivity is "reusability". Models
can be reused and integrated so to produce new models. Naturally models to be integrated
have to be expressed using a common base and the result has to lie on the same
framework. In this paper the chosen framework is the Structured Modeling, as formally
defined by Geoffrion, [3].

Here we define three integration levels, according to the degree of influence of the
operator in the procedures used to merge the models:

Level I AD the procedures are automated. This means that the user selects the
input models and the genera to be integrated, and the output integrated
model is automatically produced.

Level 2 - The user selects the input models and the order of integration among
the genera, and the output integrated model is automatically produced.

Level 3 - The user select the input models, the genera to be integrated and
formulate the steps necessary to integrate. The output integrated model
is not automatically produced, since the steps can vary according to the
situation.

2. Preliminary results.
In the rest of this paper we assume that the reader is familiar with the formal theory of the
Structured Modeling.

Given a Structured Model Mi,. letGi = {gj, j = 1. kI be the set of all the genera:
this can be partitioned into three disjoined sets: PC, A and FT such that:

PC = (gj r Gi: gj is a primitive or a compound entity genus)
A = {gj r= Gi: gj is an attribute genus I
FT = (gjE Gi: gjisafunctionoratestgenusJ.

Lemma 1: Any genus g1 E PCi does not have references to any other genera gk e (Ai'
FT)



V

PrOf.: Primitive entity elements, by definition, have no calling sequence. therefore they do not have

references to any odier element: compound entity elements. by definition. are construct only on pnmitive
entity elements. E

Lemma 2: Any genus gj E Ai has only references to another genera gk E PC,.

Proof: Attribute elements, by definition. characterize only pnmiuve and compound elements. a

Lemma 3: Any genus gi E FTi does not have references to any other genera gk E ,C,.

Proof: Function and test elements call. by definition, attntriute. (unction and test elements; theretorm.
they cannot call primitive and compound entity elements.

Definition 1: Connected Module, Sub-Mode!.
A module is a Connected Module if its genera and their cuiling sequences define f,
connected graph. A Sub-model is a connected moduie with ai lca•t one primitive en:mr
genus.

Definition 2: Behaviour Equivalence on FTj . i' i .
Two structured models M! and M2 are Behaviour Equivalent on FT1 5f FT; atnu
FT2 .FT 2 if the following two conditions hold:
a) The set AX of the attribute genera directly or indirectly called by the_•1ý 1 E FT , a611 t;;e
set A 2 of the attribute genera directly or indirectly called by the g1 E FT, have the sire
structure;
b) FTI and FT2 give as output the same values.

We shortly write "behaviour equivalent" when the sub-set FTr coincides with 7,T.

Definition 3: Normal Model.
A model is called normal if an isomorphic relation exists between attribute and
compound genera, and their elements.

The graph of the elements of a normal model is shown in figure 1: dotted rectang!es
identify genera.

I 'I 1 '

0000 00 -D CD

(D D D C C) D~
figure I

Proposition 1. Given a Structured Model Mi, it is alwawys possible to constrl'ct a
normal model N(Mi) which is behaviour equivalent to Mi.

Proof: Let us consider a generic attribute genus gj E Ai c Mi. It is always possible to define a new

compound entity genus. Ck E PCi. with the same calling sequence of gj. Lemmas I and 2 ensure that
genera which are called by an attribute genus can be called by a compound entity genus too. An
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isonuoqrhic relation can be set among die elements of gj and ck: the first element of gi calls the first
eminent of ck. eAc. Ths process is repeMed for every atnbute genus of Mi.

tf we indicate with N(Mi) fte modified model. the set B : Ick. j)} c N(Mi) c gj rz Mi for every genus

8k E Fri c N(Mi). a

Definition 4: Index Basis, Index Basis Set.
An Index Basis of a normal model N(Mi) is a couple of genera B1 = (aj, cj}, where a1
s Ai c Mi is an attribute genus, and cj is the compound entity genus called by aj. The
•,enus a; is called value component of Bj, while the genus cj is called index
ocomponent. The set BSi = (Bj, j: ..... k) containing all the index basis of N(Mi) is
"*ciled Index Basis Set.

I.finidon 5: Index Function.
An Index Function i(gj) is a rule which associate to every genus gj E N(Mi) the
-ardinality of its index set.

A.S example, given a genus gi indexed byj x k x I . its index function i(gi) returns as value 3.

3. Main results.
r.n this caragraph we try to give an example for each level of integration previously

defined.

3.1. Level I integration example.
To show the first level of integration we need to introduce the definition of a function
sub-mod:1.

Definition 6: Function Sub-Model.
SubM(f) is called Function Sub-model if the following properties hold:
a) SubM(f) is a normal model.
b) SubM(f) has at least a function genus fe FTi c Mi indexed as singleton.

In the following we give a procedure, which transforms a Structured Model Mi with at
!east one function genus indexed as singleton into a function sub-model.

The following procedure, CREATEFUNCTION_SUBMODEL, needs as input a
model Mi and a singleton genus f e FTi c Mi, and produce as output a function
s~jb-model. The proof of this is given in Proposition 2.

urocodure CREATEFUNCTIONSUBMODEL (input: Mi, f; output: SubM(f));
'odify Hi into a function sub-model SubM(fl '/

s* step Z. 'Normalize the model, *1
NORW.L (H1i);

/i step II. 'Merge functions* /
Create a LIST of calling sequence segments si of f:

vepeet
Examine the segment si C LIST;

if the referred genus gk C FT,
t hen

/. a S/ substitute si with the calling sequence of gk
/* b 1/ Substitute the value field of 9k with its rule:

/I C */ Delete gk;
Delete the segment si;

until (end of LIST):
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S' etep ZXI 'Delete genera navi; I,.n intiuence , r'

Create a LIST of gj E M:7
repeat

Examine g, E LIST:

if (gj E FT, and a , w

then delete gj;

if (gj E Ai u'PC, and g. is not calied directly -r indirectly by i:

then delete q);

until (there are no more o, E F T, ( M,. g a n ta there are nc more g9

Ai Q PC, C Mi not called dliect.ty Cz ndiocýi, by f:
end

Proposition 2: Given a Structured Model M, and an arbitrary singleton function genus
fe FTi c Mi, it exists a transforrnation T such that:

T(M) = SubM(f)
and SubM(f) and Mi are behaviour equivalent on.

Proof: By applying procedure CREATE-FUNCTIONSUB MODEL which defines tnc procedure Ta

Let us show how a function genus f can be reused as an input parameter for other
models. This action is totally automated, here is an example.

Suppose we have two models M1 and M2 , we want to substitute the genus gj E AI c
MI with the computed value given by the genus f E FT2 c M2. This goal is achieved
applying the following procedure athe symbol [Mi, SubM 2] means the integrated output
model):

procedbure REUSE (i nput M M,, I; output M,3bM-
I' Integrate M1 and M,. t is sunstituted tz g,

begin
/" Step I TChanges ir. M-"

CREATEFUNCTIONSUBMODEL (Mý,f; SubMifH) :

Create a LIST of genera gI E A- C 3 itM] f
repeat

Add the calling sequen~e's segments ct g, C A, t!ý he cal!ing sequence

gi 4CA C SubMt'f i
until end ot LIST,

/" Step II "Changes in M I

Create a LIST of genera q. C FT C :;'.M¶
repeat

Select gl from LIST:

if gi calls qC 1 Al
then

Substitute gj with f in the calling sequence of gat
LIST ;= LIST - 31;

until end of LIST

/' Step III "--elete attribute genus'
Delete g3 C Al:

end .

Proposition 3: Given two Structured Models Mi and M2. it is always possible to
substitute an attribute genus gj e Al c Mi with a singleton function genus f e FT-
M27. The result is a Structured Model.

Proof: By applying the procedure REUSE we obtain as result the model [Mi. SubM2l. Its graph of

genera must be finite, closed and acyclic.

a) Finiteness. Step IlII guaranties that the number of genera of (Mi. SubM2 l is equal to the number of

genera of (MI u SubM2(f)) - 9j.
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b) Closure. By steps I and 11. there is at least one genus of MI calling a genus of SubM 2 (f) and at least
Cne genus of SubM2(f) calling a genus of MI. From closure of MI e SubM 2 (l) it follows the closure of

(Mi. SubM2 l.

c) Acyclicity. Let us consider an arbitrary sub-set of genera Gi c [MI, SubM2 ], and let us assume that

it is cyclic. Therefore. G, contains genera belonging to both models. because no new references arm set by

the procedure among genera belonging to only one model. By construction, the sequence must be of the

type:

I .... a; re A2 c SubM2(f),f.... f .
The genus following f in the sequence has to be a function genus, while the genus preceding ai has to be

a compound entity genus. By Lemma 3 there are no references among function genera. and compound

entity genera. Therefore. G, cannot by cyclic. a

Figure 2 shows how two models are integrated.

kk

M SubM(f)
Figure 2

Proposition 4. Given two normal models Mi and M2 , the integrated model obtained
suostiauing an input parameter gj E A1 cM 1 , with an output parameter g2 e FT2 cMA12

is a Structured Model if i(gI) = i(g2).

Proof: It follows the same line of proposition 3. The necessary condition given by the equality of the

index functions ensures the closure and acyclicity of the graph of the elements..

Given the result of proposition 4 the following procedure can be constructed. The
input parameters are the two normal models, an index basis of the model MI and a
function genus of the model M2.

procedure USE (Input: NIM1 ). NIMV2. 81, f; Output: {N(M). N(M2) H:
begin

Select a 1 e 8
1;

Compute ij(a 1 );
Compute i2(f);
If il(al) * i2(f) then exit:

Create a LIST of genera gi E FTI C NIMII;
repeat

Select gi from LIST:
if gi has a reference to al then

Substitute the reference to ai with a reference t, f:

LIST := LIST - gi;

until end of LIST;
Delete BI;

end.
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The following steps create an integrated model, which is the same result as in
Geoffrion. The final graph of genera obtained applying sequentially step 0 - step IV is
shown in figure 4.

stop 0.
NORMAL (fin);

NORMAL tmktl.;
NORMAW (mar); > 47
NORMAL imfg ;

stop .. /
SUBSTITUTE (mkt, mar. [PD31. [P.;21);
USE ;-iar. Mt,tt (V.031. V);

USE (mfg, mar. (V,05), V);LJ
USE (mar, mfg, [E,D4J, E);

Step II bN 
(

SUBSTITUTE (fin, mar, tPD6. (0P.D21);
USE (fin, mar, ýED81, E);
USE (fin, mar. (V.091, V): ;

stop IV. .),t

MERGE (mfg, mar. P. Ul; fi Mkt mar mfg

Figure 4

33 Level 3 integration example.
At this level of integration the user needs to define the steps to integrate the models, and
there are no automated procedure. Let us present another example extracted from
Geoffrion (4]. The steps are informally defined, since the user will formalize them.

Stop I •" ISDelete OM and T:DEM genera from TRANSI

Delete SUP and T:SUP genera from TRANS2 - T \ 7'

step II

Merge genus CUST from TRANSI with genus
PLANT from TRANS2;

stop III
Create new genera T:DC and define its
reference; UPOtr ID.

the TOTS function genera of the two K-

models; TRANSI TRANS2

atep V (optional)
Rename genera; Figure 5

4. Conclusions.
The first remark about the definition of a formal theory to models' integration is
modularity. This can be easily achieved projecting the theory of the Structured Modeling
into the same space of the Object Orientation Principles.

The second remark regards the construction of three sub-sets which contain the
procedures characterizing the formal rules of the three integration levels.

Both aspects will be deeper developed in the future.
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3.2. Level 2 integration example.
In this case the role of the user is relevant, since the input parameters to be merged are
only identified by him.

Proposition 5. Given two normal models N(Mj) and N(M2 ) and the corresponding
index basis set BS1 and RS2 , the integrated model obtained substituting in N(M;), Bje
BSI with Bke BS2 is a Structured Model.

Proof: To substitute Bj with Bk implies that every genus gj 4 FTi has to replace the reference in its
calling sequence to aj e B, whit ak E Bk. The graph of genera of the integra.ed model has to be: (a)
finite; (b) closed and (c) acyclic. (a). (b) hold by constructon; (c) hok- ,, lemma 2.o

Proposition 6. Given two normal models N(Mj) and N(M 2), and the corresponding
index basis set BSi and BS2 , the integrated model obtained substituting, in N(MI), an
index component cj E B1 e BS1 with an index component ck E Bk E BS 2 is a Structured
Model

Proof: It follows the lines of propositon 5.@

Given the results of the proposition 5 and 6 the following procedures can be
constructed

procedure SUBSTITUTE 1:nput: N1M14), NfM2). E!, 52:
Output: [NiMI), N(M2M]);

begin

Create a LIST of genera g, E FTI C Mj;

repeat

Select gi from LIST

Substitute Al E BI with A2 E B2 in the caiiing sequence of g,;

LIST ;= LIST - gi;

until ena 0, LIS1T:

Delete Bj;

end.

procedure MERGE Linput: N(MI). N(M,). BI, bi2
_ur. put: fNMI•. 1;M2 ] :

begin

Select ci, aI E BI, c2 e Bi:

Substitute cl with C2 in the calling sequence of al;

end .

In the next we treat the core example extracted from Geoffrion (4]. The sub-models to
be integrated are shown in figure 3 (the details are omitted):

±C 
f

Fm mkt mar Mfg
Figure 3
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EXTENDED ABSTRACT

0. Introduction
As pointed out by many authors, a Model Management System (MMS) provides for

creation, storage, manipulation, and access to models. MMS functions can be divided in
two main groups: Model storage functions and Model manipulation functions. The
former includes Model Building. Model Representation, physical and logical Model
Storage and Model Retrievai; the latter includes Model Instantiation, Interface with
Databases, Model Maintenance, Links between model and Algorithms, and Model
Solving.

Model representation schemes plays a key role in the implementation of effective
MMSS. To fully implement the functions of MMSs, we need to state a rigorous
conceptual frame!work with a single model representation leading to:

1) inrde.-.nd.nce of model representation and model solution,
2) representational independence of general model structure and detailed data

needed to describe specific model instances.
A system based on these ideas would show its usefulness for most phases of the

life-cycle associated with model-based work (Geoffrion 1987). For example, consider a
m'athematical programming problem. Once a model of this problem has been
constructed, - MMS should allow the user to perform the following steps:

1) select the solution technique (if any),
2) solve the model,
3) conduce sensitivity analysis.

To automate steps I and 2, the system has to be able:
a) to recognize what kind of model arises (so that it could automatically select

the appropriate solver);
b) to translate data instantiating the model (querying the Database where they

are stored) into the format required by the selected solver.
This paper will focus on the model recognition phase. We will try to give its

theoretical foundations and to define which conditions a model definition language has
to satisfy so that the resulting representation is "recognizable"

Our formalization of the recognition process is based on the concept of "minimal
representation". A representation of a model is minimal if any other equivalent
representation of the same model can be "reduced" to it.



X1iI

Model Recognition: Extended abstract

2. Model Recognition Problem: Preliminary Resuits.
The aim of this section is to provide for some formal definitions. In the next, we wiii

use them to illustrate how recognition process can be :arned out
The recognition process we are'trying to formalize s, based on the concept of

minimal representation. A representation of a model is minimal if any otner equivalen.
representation of the same model can be reduced to :t.

,n the rest of this paper we will define and exp.ain minimaiity, equivalence ann:'
reduction of model representations; first we need to define wr at we intend for' model'
and "model representation".

Definition I
We define the system M b be a model of 1-e system P if:
- M does not interact ne•thr irecty nor indirectly wvit 0
- M is used to obtain information about P
- M comprises all the elements of P relevant for the intended purpose of me mooel.

Definition 2
Given a formal language L and a model M, we define L(M) to be its tormai representation jncer L,
if it comptises the expression in language L of aM the elements of M, ana of the interactons existing
among them.

In the following we will use the terms "model representation" or simply
".representation" to indicate the "formal" representation of a given model under some
formal language.

Let us consider, as an example, model Mi as the model of the system P thai computes
the mean of a given series of values belonging to P: if L is the standard algebr-i-
notation, then L(M,) will be:

n

mean - 1]n

If L(Mi) exists and is unique, then the recognition problem has a trivial solution.
because there is a 1:1 correspondence between model and its representation.
Unfortunately, except for very few cases, the model Mi has many representations
LfM-), j=l ... , n, n>l. Referring to the previous example. two other ways to represent
the same model are the following ones:
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nz
sum = x, Yk

i~l k=lI

[21 result = (3]
summean = n

It is intuitive that all previous representations are equivalent, in so far as they "do the
same thing". Nevertheless, for our purposes we need a more rigorous definition of
equivalence based on the concept of "ransformauion rule".

We can think to a transfoimauon rule as to a iunction or procedure whose input is
the whoie modei representation or a part of it. and whose output is a new model
representation or a part ox it. Obviously, the output of a transformation rule must be
semanticaily consistent with its in'put. Let us give its formal definition:

Definition 3
Consider P tormal language L and two dstinct sets E, and E2 of expresrons of L semantically
,dentical. Let R be the spt of all transtormation rules Uehoed on L: r E R is defined to be a

translornation rule on L it z:ted to E,1 ranstoerns it into E2,

The existence of transformation ruies is very important tc state formally the
equivalence of model representations. Two equivalent representations must be
semanzically identical. in other words, there exist two (sets of) transformation rules that
transform one into 1r,1e other, and viceversa. We can formalize the equivalence between
model representations as follows:

Definition 4
Let SL = ( L(M): I=1, ..., n; n> 1 be the set of an possble representation of M, in the language L, Two
representations L4MJ. Lk(Mj E SL, jIk, are defined to be equivalent i tIere are two sets of

transformation rules, R, and R2, defined on L such that R1 applied lo L4MJ transform it into LI(Mj.
and 8 2 applied to Lk.(M} tansform it into 14M,) If R1 = 8 2 then the two representations are defined
Identical, Obviously, identical representations are also equivalent.

As an example, let us consider two transformation rules, called split and join suitable
to be applied to representations [1] and [2]. The terms LHS and RHS stand for
respemtively "left hand side" and "right hand side".

transformation split
input

inai-ction type ractlion
output

,ut-ass$gnment type ausszpn•nent statemmni
cut fractio. type fraction

begin
set RHS of inassignmrnnt to numerator or infracton
set numerator of out fracuon to LHS of out assignmrent
s,et denomin'itor of out-fraction ;o (enominator of infraction
end
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transformation )oin
input

in•astgnment type assignment sLatement
Lirfraction typt fraction

output
out_fractlon type fraction

begin
if LHS of in-assignment = numerator of infraction then

exit join
set numerator of out-fraccuon to RHS of m -assignment
wet denominator of out fraction to denomrnaior of in-fraction
end

The rule split performs the following operations: given a fraction, it read.& its
numerator and assigns it to an intermet'late variable, and t.... :t builds another fi-acuion
whose numerator and denominator ar.. respectively the intermediate variable and the
denominator of the given fraction.

The rule join acts as follows: given an assignment statement and a fraction whose
numerator is the variable on the left hand side of the assignment statement, it builds a
new fraction whose numerator and denominator are respectively the right hand side of
the assignment statement, and the denominator of the of the given fraction.

Since we can transform representation 11] into representation 121 and vice versa by
applying respectively transformation rules split and join, they are equivalent in the
sense expressed in Definition 3. They are not identical, since transformauon rules we
need to apply are different.

Let us now consider a third rule, called rename, which renames all the elements of a
model definition, or a part of them, subiect to the simple constraint that ail elements
with identical name in the input model representatiorn must have identical name in the
output one. Model representation 131 is one of the possible results of applying rule
rename to [11. Since transformation rule we need to apply io transform representation
[1] into representation 131 and vice versa is the same, they are identical.

3. Model Recognition Problem: Basic Ideas.
As asserted in first section of this paper, our main task i% to determine which

conditions have to be satisfied so that the recognition of a model can be performed. For
this purpose, we state that the language L must allow that the set of model
representations it produces can be ordered by rank. The rank is a measure, defined on
some measurable aspect of L, which allows to class and order model representations.
We formalize that as follows:

Definition 5
A lormal language L satisfies the property of rankablllty if.

- all model representabons L(Mj E St are equivalent;
- all model representations LMJ) E SL can be ranked
- SL can be parttioned by rank and all the elements in the same cell of the partiton are
identical.

In previous examples we might consider the number of equations as rank. If so, then

representation [11 and 131 are of rank I while representation 121 is of rank 2, Since all

representations are equivalent, and representations II] and 13] are identical, then the

property of rankability holds.
Now, let us explain how recognition process can be carried on. To recognize a model



XVI

Model Recognition: Extended abstract

representation means that we have to determine the model it represents. The basic idea
of this process is to transform the representation to recognize into another one that we
know the kind of model it represents. So doing, we have "recognized" the model.

If the representation we- deal with are expressed in a language L satisfying
rankability, then all representations of the same model are equivalent. So, if we know
all transformation rules that language L allows, then we can recognize any
representation simply transforming it into the known one by applying to it the
appropriate transformation rules.

The set of all transformation rules may be incredibly large or even not finite. This
fact can influence the efficiency of the recognition process. The recognition process can
be carried out more efficiently if it is based on the ideas of "minimal representation-
and of "reduction rule" defined as follow:

Definftion 6
A m•det wesntaton WM) is detfied o be nfrhmat it:

- L satisfies tle property of ranlabdity;
- it has the lowest iossibile rank.

Definition 7
Given a language L satisfying rankability, reduction rules are defined to be transtormation rules
which when applied to a model representation L*(M,) E SL of rank k produce a model representation
LýM) e SL oi rank j < k.

Referring to previous example, we can consider representations (11 and [21 as
minimal ones.

Property of rankability plays a crucial role for our purposes: in fact, if L satisfies
rankability, all reduction rules are known, and they form a finite set then:

- it always admit a minimal representation (i.e. a representation which has the
lowest possible rank, and to which any other representation of the same model

can be reduced);
- any model representation in language L can be reduced in its minimal form

(by applying to it the appropriate reduction rule until no more rule can be
applied);

- all minimal representations of the same model are identical.

Under the above mentioned condition, the recognition process of a given model
representation can be based on the minimal representation by performing the following
basic steps:

1) reduce the model representation to recognize to its minimal form;
2) search among the "known" minimal model representation for a template

matching the minimal representation obtained by step 1.

Since for any given language L, the set of the reduction rules must necessarily be a
subset of the set of the transformation rules, the recognition process of a given model
based on the minimal representation is more efficient than the previous one.

Now, we can define formally the condition under which a given model definition
language generates "recognizable" model representations:
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Definkion 8
A model representation is defined to be recognizable if tie recognition process:
-- can be based on its minima representation
- can be performed in a finite number of steps.

Claim I
A formal model definition language L generates .recognizable, model representations it:
- it satisfies tte property of rankability.
- the set oW afl reduction rules it admits is finite.

Proof:
If L satisfies property of rankability then it always admit a minimal representaton, If the set of the
reduction rules is finite any model representation can be reduced to its minimal form in z finite
number of steps. In this way both the conditons wtnich state the recognizability ot a model
representation are satsfied. i

3. Conclusions
Here we have sketched the fundamental lines to "recognize" models representation.

It seems to us that the idea of minimality looks very promising to be further
investigated.
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Extended Abstract

This paper describes a simple methodology for reasoning about temporal

and precedence constraint satisfiability problems arising in job scheduling. In

particular, a Constraint Satisfaction Problem (CSP) approach is presented.

Several researchers, coming both from Artificial Intelligence (Al) and

Operations Research (OR) have investigated methods for dealing efficiently

with time (see, e.g., [2, 3, 7, 121); however, at least to the author's knowledge,

only very few real and large scale scheduling applications have been

approached using this relatively new technique [4).

In this paper, among all the job scheduling problems, an application in

which a set V of n jobs has to be processed on a single machine is considered,

such that a release date ri, a deadline di and a process time pi are associated

with each job i E V. The problem is formulated on a constraint network, i.e.,

a digraph G = (V,A) of n nodes (jobs). An arc (ij) E A means that job j can

be processed immediately after job i. A weight pj and the attributes rj and di

for each node j E V are given. Moreover, a digraph P = (VE), with E _ A,

is given such that an arc (ij) E E represents a precedence constraint between
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jobs i and j. The problem consists of determining the starting time for

processing the jobs in V such that the time windows (defined by rj and dj) for

scheduling the execution of each node (job) is satisfied and the precedence

constraints between nodes given-by the relationships defined in arc set E are

satisfied within a time horizon (production plan).

Based on the Allen's model for temporal logic [11, a CSP formulation is

first presented. A CSP consists of a set of variables X = {xi, x2, ..., xr }, their

associated domains Di, D4, ..., Dn and a set C of constraints on these variables.

A solution to a CSP consists of an instantiation of all the variables which does

not violate any of the constraints. In the case of the application considered in

this paper, let X be the set of variables such that xi represents the starting time

for processing job i, V i E V. A domain Di is associated with each variable xi

such that Di = { set of available Time Machine Units (TMUs) for processing

job i (production plan) }. The set C of constraints is defined by two classes of

constraints, namely Ci and C2, such that C = Ci U C2, Ci = { unary constraints

(time interval) } = { riVi E V } U { di V i G V } and C2 = { binary constraints

(precedences) } = { (ij) G E }. The problem is to verify whether an

instantiation of all the variables is possible such that all the jobs are completed

within their time interval and no precedence relationship is violated.

Starting from the Allen's interval algebra, the temporal relations are

specified by atomic relations. In particular, for each pair ij of jobs the following

atomic relations are defined:

- After(j,i): this specifies the precedence relationship between i and j, i.e.,

(ij) E E;

- Available(iriDi): this specifies the release date of job i within the
production plan;
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Due(i,,Di): this specifies the deadline of job i within the production

plan.

The constraint network G of this problem is then "preprocessed" such that

to compute the tightest possible bound for both unary and binary constraints

on the jobs. In particular, given the explicit precedence relationships between

jobs the possibility of inferring additional implicit precedence relationships are

explored; for instance, the transitivity of the predicate After(j,i) may allow to

infer information such that

- After(j,k) nAfter(ki) - After(j,i).

Moreover, the availability interval of each job within the production plan

is computed by considering its release date, deadline and precedence

relationships. The new domain Di' for each job i in V is hence computed such

that the predicate

- Di' = Interval(4riid) = Di n Available(4riDi) n Due(4,di,D)

returns the restricted time interval in which each job has to be processed

in order to obtain a feasible scheduling of the jobs. Note that all the possible

instantiations of the corresponding variables are thus noticeably reduced after

the computation of Di', V i E V.

It is worth mentioning that such a preprocessing approach allows for

further generalization of the proposed scheduling problem; for instance, it

could be necessary to take into account a possible decomposition of the jobs

into different subtasks [13], to analyze periodic scheduling problems [9] or to

consider setup times between jobs [5].
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A Prolog-like algorithm is then pi-esented for finding a consistent

assignment for the variables, i.e., an instantiation of all the variables which does

not violate any of the constraints given by both Ci and C2. In particular, the

procedure

- xi = Assign(4Di)

associates a value in the new domain Di' with the corresponding variable

x4, such that a feasible starting time for processing job i is given.

In this phase, following the most-constrained approach suggested in [i 2,

the job having the tightest constraints is selected first. In particular, the

procedure

- Preorder(X)

performs a sort of the set of variables in such a way that the most critical

job, i.e., the most constrained job, is chosen first for its instantiation.

In this particular application the most constrained path is proven to be the

most efficient implementative approach, in the sense that the number of

backtrackings is minimized (see, e.g., [6, 7] for an overview of the complexity

of this kind of temporal CSP problem).

Note that a different way for finding a feasible instantiation of all the

variables is to look for an initial solution, possibly inconsistent, and then

incrementally repair constraint violations until a consistent assignment is

achieved. Such an approach is proposed in [10] in the case of scheduling

problems without precedence and time window constraints.
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The application field and computational experiences related to real-life

cases are also given in the full paper. Some conclusions along with a

comparison with a more traditional mathematical programming approach (see,

e.g. [5, 8]) for solving the scheduling problem under consideration are finally

derived.
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